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Universitat Autònoma de Barcelona (UAB)
antonio@cvc.uab.es

Jiaolong Xu
CVC and DCC, UAB

jiaolong@cvc.uab.es
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Abstract

Supervised learning tends to produce more accu-
rate classifiers than unsupervised learning in general.
This implies that training data is preferred with an-
notations. When addressing visual perception chal-
lenges, such as localizing certain object classes within
an image, the learning of the involved classifiers turns
out to be a practical bottleneck. The reason is that,
at least, we have to frame object examples with
bounding boxes in thousands of images. A priori,
the more complex the model is regarding its number
of parameters, the more annotated examples are re-
quired. This annotation task is performed by human
oracles, which ends up in inaccuracies and errors in
the annotations (aka ground truth) since the task is
inherently very cumbersome and sometimes ambigu-
ous. As an alternative we have pioneered the use of
virtual worlds for collecting such annotations auto-
matically and with high precision. However, since
the models learned with virtual data must operate in
the real world, we still need to perform domain adap-

tation (DA). In this chapter we revisit the DA of a
deformable part-based model (DPM) as an exemplify-
ing case of virtual- to real-world DA. As a use case,
we address the challenge of vehicle detection for driver
assistance, using different publicly available virtual-
world data. While doing so, we investigate questions
such as: how does the domain gap behave due to
virtual-vs-real data with respect to dominant object
appearance per domain, as well as the role of photo-
realism in the virtual world.

1 Need for Virtual Worlds

Since the 90’s, machine learning has been an essential
tool for solving computer vision tasks such as image
classification, object detection, instance recognition,
and (pixel-wise) semantic segmentation, among oth-
ers [76, 13, 17, 54, 4]. In general terms, the best per-
forming machine learning algorithms for these tasks
are supervised; in other words, not only the raw
data is required, but also annotated information, i.e.
ground truth, must be provided to run the training

ar
X

iv
:1

61
2.

09
13

4v
1 

 [
cs

.C
V

] 
 2

9 
D

ec
 2

01
6



Invited book chapter to appear in Domain Adaptation in Computer Vision Applications, Springer Series: Advances

in Computer Vision and Pattern Recognition, Edited by Gabriela Csurka. Written during Summer 2016.

protocol. Collecting the annotations has been based
on human oracles and collaborative software tools
such as Amazon’s Mechanical Turk [48], LabelMe
[53], etc. It is known, that human-based annotation
is a cumbersome task, with ambiguities, and inaccu-
racies. Moreover, not all kinds of ground truth can
be actually collected by relying on human annotators,
e.g. pixel-wise optical flow and depth.

The non-expert reader can have a feeling of the
annotation effort by looking at Fig. 1, where we can
see two typical annotation tasks, namely bounding
box (BB) based object annotations, and delineation
of semantic contours between classes of interest. In
the former case, the aim is to develop an object de-
tector (e.g. a vehicle detector); in the latter, the aim
is to develop a pixel-wise multi-class classifier, i.e. to
perform the so-called semantic segmentation of the
image.

With the new century, different datasets were cre-
ated with ground truth and put publicly available for
research. Providing a comprehensive list of them is
out of the scope of this chapter, but we can cite some
meaningful and pioneering examples related to two
particular tasks in which we worked actively, namely
pedestrian detection and semantic segmentation; both
in road scenarios for either advanced driver assistance
systems (ADAS) or autonomous driving (AD). One
example is the Daimler Pedestrian dataset [16], which
includeds 3,915 BB-annotated pedestrians and 6,744
pedestrian-free images (i.e. image-level annotations)
for training, and 21,790 images with 56,492 BB-
annotated pedestrians for testing. Another example
corresponds to the pixel-wise class ground truth pro-
vided in [7] for urban scenarios; giving rise to the well-
known CamVid dataset which considers 32 semantic
classes (although only 11 are usually considered) and
includes 701 annotated images, 300 normally used
for training and 401 for testing. A few years af-
ter, the KITTI Vision Benchmark Suite [20] was an
enormous contribution for the research focused on
ADAS/AD given the high variability of the provided
synchronized data (stereo images, LIDAR, GPS) and
ground truth (object bounding boxes, tracks, pixel-
wise class, odometry).

In parallel to these annotation efforts and the cor-
responding development of new algorithms (i.e. new

human-designed features, machine learning pipelines,
image search schemes, etc.) for solving computer vi-
sion tasks, deep leaning was finding its way to be-
come the powerful tool that is today for solving such
tasks. Many researchers would point out [30] as a
main breakthrough, since deep convolutional neu-
ral networks (CNNs) showed an astonishing perfor-
mance in the data used for the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC). ImageNet
[14] contains over 15 million of human-labeled (using
Mechanical Turk) high-resolution images of roughly
22,000 categories. Thus, ImageNet was a gigantic hu-
man annotation effort. ILSVRC uses a subset of Im-
ageNet with about 1,000 images of 1,000 categories;
overall, about 1.2M images for training, 50,000 for
validation, and 150,000 for testing. Many deep CNNs
developed today rely on an ImageNet pre-trained
deep CNN which is modified or fine-tuned to solve
a new task or operate in a new domain. The research
community agrees in the fact that, in addition to
powerful GPU hardware to train and test deep CNNs,
having a large dataset with ground truth such as Im-
ageNet is key for their success. In this line, more re-
cently, it was released MS COCO dataset [34], where
per-instance object segmentation is provided for 91
object types on 328,000 images, for a total of 2.5M
of labeled instances.

As a matter of fact, in the field of ADAS/AD we
would like to have datasets with at least the variety of
information sources of KITTI and the ground truth
size of ImageNet/COCO. However, when looking at
the ground truth of KITTI in quantitative terms,
we can see that individually they are in the same
order of magnitude than other ADAS/AD-oriented
publicly available datasets (e.g. see the number of
pedestrians BBs of KITTI and Daimler datasets, and
the number of pixel-wise annotated images of KITTI
and CamVid). A proof of this need is the recently
released Cityscapes dataset [12] which tries to go
beyond KITTI in several aspects. For instance, it
includes 5,000 pixel-wise annotated (stereo) images
covering 30 classes and per-instance distinction, with
GPS, odometry and ambient temperature as meta-
data. In addition, it includes 20,000 more images but
where the annotations are coarser regarding the de-
lineation of the instance/class contours. This kind of
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Figure 1: Ground truth obtained by human annotation: left) framing the rectangular bounding box (BB)
of vehicle instances; right) delineating the contours (silhouettes) between the different classes of interest
contained in the image, even at instance level.

dataset is difficult to collect since driving through 50
cities covering several months and weather conditions
was required. Moreover, providing such a ground
truth can take from 30 to 90 minutes per image for a
human oracle in case of fine-grained annotations and
depending on the image content.

For the semantic segmentation task, Cityscapes
goes one order of magnitude beyond KITTI and
CamVid. However, it is far from the annotation num-
bers of ImageNet and MS COCO. The main reason
is two-fold. On the one hand, data collection itself,
i.e. Cityscapes images are collected from on-board
systems designed for ADAS/AD not just downloaded
from an internet source; moreover, metadata such as
GPS and vehicle odometry is important, not to men-
tion the possibility of obtaining depth from stereo.
On the other hand, the annotations must be more
precise since ultimately the main focus of ADAS/AD
is on reducing traffic accidents. In any case, as
we mentioned before, other interesting ground truth
types are not possible or really difficult to obtain by
human annotation, e.g. pixel-wise optical flow and
depth (without active sensors); but eventually these
are important cues for ADAS/AD based on visual
perception.

In this ADAS/AD context, and due to the difficul-
ties and relevance of having large amounts of data
with ground truth for training, debugging and test-
ing, roughly since 2008 we started to explore a differ-
ent approach. In particular, the idea of using realistic
virtual worlds (e.g. based on videogames) for train-

ing vision-based perception modules. The advantages
were clear: (1) forcing the driving and data acquisi-
tion situations needed; (2) obtaining different types of
pixel-wise ground truth (class ID, instance ID, depth,
optical flow); (3) generating such data relatively fast
(e.g. currently our SYNTHIA environment [50] can
generate 10,000 images per hour with such ground
truths, using standard consumer hardware); etc. Of
course, such a proposal also came with doubts such
as can a visual model learned in virtual worlds oper-
ate well in real-world environments?, and does this
depend on the degree of photo-realism?. From our pi-
oneering paper [36], where we used pedestrian detec-
tion based on HOG/Linear-SVM as proof-of-concept,
to our last work, i.e. SYNTHIA [50], where we have
addressed pixel-wise semantic segmentation via deep
CNNs, we have been continuously exploring the idea
of learning in virtual worlds to operate in real envi-
ronments.

The use of synthetic data has attracted the atten-
tion of other researchers too, and more recently spe-
cially due to the massive adoption of deep CNNs to
perform computer vision tasks and their data hun-
gry nature. 3D CAD models have been used to
train visual models for pose estimation, object detec-
tion and recognition, and indoor scene understand-
ing [23, 1, 55, 59, 47, 57, 46, 56, 2, 10, 63, 44, 43,
45, 26, 28, 52, 37, 62, 61, 41, 6, 27]; a virtual racing
circuit has been used for generating different types
of pixel-wise ground truth (depth, optical flow and
class ID) [25]; videogames have been used for train-
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ing deep CNNs with the purpose of semantic seg-
mentation [49] and depth estimation from RGB [58];
synthetic scenarios have been used also for evalu-
ating the performance of different feature descrip-
tors [29, 3, 74, 73, 75] and for training and test-
ing optical and/or scene flow computation methods
[39, 8, 42, 38], stereo algorithms [24], as well as track-
ers [64], even using synthetic clones of real-world ar-
eas of interest [18]; synthetic LIDAR-style data has
been used for object detection too [31, 32]; finally,
virtual worlds are being used for learning high-level
artificial behavior such as playing Atari games [40],
reproducing human behavior playing shooter games
[35] and driving/navigating end-to-end [9, 82], even
learning unwritten common sense [72, 83].

2 Need for Domain Adaptation

From the very beginning of our work, it was clear that
there is a domain gap between virtual and real worlds.
However, it was also clear that this was the case
when using images coming from different (real) cam-
era sensors and environments. In other words, the
domain gap is not a virtual-to-real issue, but rather
a more general sensor-to-sensor or environment-to-
environment problem [70, 71]. Other researchers con-
firmed this fact too when addressing related but dif-
ferent visual tasks than ours [66]. Since then, training
visual models in virtual worlds and applying domain
adaptation techniques for their use in real-world sce-
narios come hand-by-hand for us. In fact, more au-
thors have followed the approach of performing some
explicit step of virtual- to real-world domain adapta-
tion, without being an exhaustive list, the reader can
address [32, 33, 63, 43] as illustrative examples.

We showed that virtual- to real-world domain
adaptation is possible for holistic models based on
the HOG+LPB/Linear-SVM paradigm [68] as well
as on the Haar+EOH/AdaBoost one [69]. In the
former case, proof-of-concept experiments adapting
RGB-style synthetic images to far infrared ones (FIR)
reported positive results too [60]. Moreover, for the
Deformable Part-based Model (DPM) [17] we also
proposed to use virtual worlds and domain adapta-
tion [79, 77]. In most of the cases we focused on

supervised domain adaptation, i.e. a relatively few
amount of annotated target-domain data (i.e. from
the real world in our case) was used to adapt the
model learned with source-domain data (from the
virtual world). For the holistic models we focused on
mixing the source and target data collected via active
learning for model adaptation, we termed the corre-
sponding feature space as cool world; while for DPM
we focused on using just the source-domain model
together with the target-domain data, i.e. without
revisiting the source-domain data. In terms of mod-
ern deep CNNs, the former case would be similar to
mixing source and target data in the mini-batches
while the latter case is more in the spirit of the so-
called fine-tuning.

In the rest of this chapter we are going to focus on
DPM because it was the state-of-the-art for object
detection before the breakthrough of deep CNNs. A
priori it is a good proxy for deep CNNs regarding
the specific experiments we want to address, after all
deep CNNs eventually can require domain adaptation
too [19, 67, 65, 11]. Obviously, being based on HOG-
style features there is a point where much more data
would not really translate to better accuracy [81],
so we will keep training data in the order of a few
thousands here. On the other hand, note that DPM
can be reformulated as a deep CNN [22] for end-to-
end learning. Moreover, the domain adaptation tech-
niques we proposed for DPM [77], can be used as core
technology for hierarchical domain adaptation1 [78]
as well as for weakly supervised incremental domain
adaptation [80].

In particular, we are going to rely on our domain
adaptation method for DPM termed as Structure-
aware Adaptive Structural SVM (SA-SSVM), which
gave us the best performance in [77]. In this chapter
we compliment the experiments run in [77] mainly by
addressing questions such as the role of photo-realism
in the virtual world, as well as how does the domain
gap behave in virtual-vs-real data with respect to dom-
inant object appearance per domain. Moreover, for
the sake of analyzing new use cases, instead of focus-
ing on pedestrian detection using virtual data from

1With this technique we won the 1st pedestrian detection
challenge of the KITTI benchmark suite, a part of the Recog-
nition Meets Reconstruction Challenge held in ICCV’13.
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Figure 2: DPM for modeling pedestrians. There are
two components (left, black background), and each
component is encoded as a root and six parts (right,
one component).

Half-Life 2 as in [77], here we focus on vehicle de-
tection using different virtual-world datasets, namely
Virtual KITTI [18], SYNTHIA [50], and GTA [49].

3 Domain Adaptation for DPM
in a Nutshell

DPM encodes the appearance of objects’ constituent
parts together with a holistic object representation
termed as root. In contrast to other part mod-
els, DPM allows the parts to be located at differ-
ent positions with respect to the root. The plau-
sible relative locations, known as deformations, are
also encoded. Both appearance and deformations are
learned. The appearance of the parts is learned at
double the resolution than the root. The triplet root-
parts-deformations is known as component. In order
to avoid too blurred models DPM allows to learn a
mixture of components. Different components use to
correspond to very different object views or poses,
specially when this implies very different aspect ra-
tios of the corresponding root BB. See Fig. 2 for a
pictorial intuition.

In practice, a DPM is encoded as a vector w which

has to be learned. In the domain adaptation context,
we term as wS the model learned with source-domain
data (e.g. with virtual-world data). Our SA-SSVM
domain adaptation method takes wS and relatively
few annotated target-domain data (e.g. real-world
data) to learn a new w model which is expected to
perform better in the target domain. The reader is
referred to [77] for the mathematical technical de-
tails of how SA-SSVM works. However, let us explain
the idea with the support of the example in Fig. 3;
where wS consists of components: half body and full
body, as well as persons seen from different view-
points. Each component consists of root and parts
(head, torso, etc). To adapt this DPM to a target

domain, we decompose it as wS = [wS
1
′
, . . . ,wS

P
′
]′,

where P is the number of structures and u′ stands
for transpose of u. Note that each component, wS

p ,
may contain both appearance and deformation pa-
rameters (for roots only appearance). The decom-
posed model parameters are adapted to the target do-
main by different weights, denoted by βp, p ∈ {1, P};
i.e. the SA-SSVM procedure allows domain adapta-
tion for each of such structures separately by defin-
ing ∆wp = wp − βpw

S
p , p ∈ {1, P}. In order to

learn these adaptation weights, we further introduce
a regularization term ‖β‖2 in the objective function,
where β = [β1, . . . , βP ]′, and we use a scalar param-
eter γ to control its relative penalty. Finally, C and
the ξi are just the standard terms of a SVM objec-
tive function and N the number of target-domain
samples used for the adaptation. After optimizing
for the objective function (see mid box in Fig. 3),
w = [w1

′, . . . ,wP
′]′ is the domain adapted DPM.

4 Experimental Results

4.1 Datasets

As we mentioned before, we are going to focus on ve-
hicle detection for ADAS/AD applications. We use
the training data of the KITTI car detection chal-
lenge [21]; which is split into two sets, one for ac-
tually training and the other for testing. Such a
testing set will be the only one used here for that
purpose, and we will follow the so-called moderate
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Figure 3: Domain Adaptation of DPM based on SA-SSVM (see main text for details).
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setting when considering which vehicles are manda-
tory to detect. For training, we will consider four
more datasets in addition to the mentioned split of
the KITTI car detection challenge, thus, five in to-
tal. Namely, the KITTI car tracking dataset [21], its
synthesized clone Virtual KITTI [18], SYNTHIA [50],
and GTA [49]. Of course, SYNTHIA is a dataset with
different types of ground truth, so we selected a set
of cars and images for our experiments. In the case
of GTA, we semi-automatically annotated with BBs
a set of cars. Table 1 shows the number of samples
in each dataset. Figures 4, 5, 6, and 7, show images
sampled from KITTI-Det, KITTI Track with Virtual
KITTI, SYNTHIA and GTA, respectively. Virtual
KITTI and SYNTHIA are based on the same devel-
opment framework, i.e. Unity3D2. We can see that
the images from GTA are more photo-realistic than
the ones used in SYNTHIA and Virtual KITTI. SYN-
THIA images are not always corresponding to a for-
ward facing on-board virtual camera as is the case
of Virtual KITTI and GTA. For more details about
the datasets the reader can refer to the corresponding
papers.

4.2 Protocol

In order to show the accuracy of the vehicle detec-
tors we plot curves of false positive per image (FPPI)
vs miss rate (MR) according to the Caltech protocol
[15]; with an overlap of the 50% between detection
and ground truth BBs. For training and testing we
only consider moderate cases, which according to the
definition given in the KITTI car detection challenge,
are those vehicles non-occluded or just partially oc-
cluded (maximum truncation: 30%), and with a BB
height ≥ 25 pixels. The vehicles mentioned in Tab.
1 refer to moderate cases.

Regarding DPM we use three components, each
with eight parts. Part locations are initialized as
6 × 6 HOG-style cells (48 × 48 pixels) covering the
root (at its double resolution version). Note that,
in contrast to [79, 77], here we have not explored
the use of the pixel-wise vehicle masks (available for
virtual-world data) to provide a better initialization

2See unity3d.com

of part locations during DPM learning. Thus, real-
and virtual-world training data are used equally for
learning source-domain DPMs.

Regarding the application of SA-SSVM we have
followed the settings reported in [77] as producing
the best results. Namely, the adapted structures
correspond to the root and parts, i.e. not to com-
ponents; and we set γ = 0.08 and C = 0.001 (see
Fig. 3). Since domain adaptation experiments (i.e.
SA-SSVM based ones) require random sampling of
the target domain training data, they are run three
times and the mean FPPI-MR curve and standard-
deviation based intervals are plotted (i.e. as in [77]
but with three repetitions instead of five).

4.3 Experiments

According to the datasets listed in Tab. 1, we define
the set of source-domain datasets to be S = {KITTI-
Track, Virtual KITTI, SYNTHIA, SYNTHIA-Sub,
GTA}. The target-domain dataset is always KITTI-
Det Test. KITTI-Det Train and KITTI-Det Test
are coming from the same domain since they cor-
respond to two splits we have done from the same
original dataset. All the learned detectors are tested
in KITTI-Det Test, and the difference among them
is the data used for their training. Accordingly, the
reported experiments are as follows:

• SRC: Training with a dataset s ∈ S.

• TAR-ALL: Training based on the full KITTI-
Det Train.

• TARX: Training with a subset of random images
from KITTI-Det Train, in particular, only using
the 100X% of the images.

• SA-SSVM: Training with a dataset s ∈ S plus
the images used for the TARX shown in the same
plot.

Following this pattern, Fig. 8 shows results for
X = 0.1 (i.e. 10%), Fig. 9 shows results for X = 0.5
(i.e. 50%), and Fig. 10 shows results for X = 1 (i.e.
ALL).
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Table 1: Used samples for each dataset. Images stands for the number of images and, from them, Vehicles
stands for the number of annotated vehicles using a bounding box. Negative samples are selected from
background areas of the same images. KITTI-Det Test and KITTI-Det Train refer to two splits of the
training set of the KITTI car detection training set. KITTI-Det Test is the testing set used in all the
experiments of this chapter, while the rest of datasets are used only for training. For KITTI Track and
Virtual KITTI, we use sequences 1, 2, 6, 18, and 20 as the training datasets. SYNTHIA-sub refers to a
subset randomly sampled from SYNTHIA.

KITTI-Det Test KITTI-Det Train KITTI-Track Virtual KITTI SYNTHIA SYNTHIA-Sub GTA
Images 3163 3164 2020 1880 1313 675 580
Vehicles 12894 12275 12950 6867 2052 1023 1054

Figure 4: Images sampled from KITTI-Det.
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Figure 5: Images sampled from KITTI-Track (left) and Virtual KITTI (right). Note how Virtual KITTI is
a synthesized but realistic clone of KITTI-Track.

4.4 Discussion

The first observation comparing SRC and TAR-ALL
results (note that they are constant across figures
since do not depend on X) is that there is a large
domain gap. Since we would like to annotate as less
real-world data as possible, let us start our analysis
for X = 0.1 (see Fig. 8).

The worst case is when SRC∈ {KITTI-Track, Vir-
tual KITTI} since the average miss rate is ∼ 17
points worse than for TAR-ALL. The best case is
when SRC∈ {SYNTHIA, GTA}, where the gap is of
∼ 12 points. Note that this is not related to the
number of vehicle samples since GTA has ∼ 1/6 of
vehicles than Virtual KITTI for training, SYNTHIA
∼ 1/3 than Virtual KITTI, and Virtual KITTI in
turn contains ∼ 1/2 of the vehicles in KITTI-Track
and in KITTI-Det Test. An analogous behavior is
seen when ranking the datasets by number of vehicle-
free images. In any case, both ∼ 17 and ∼ 12 points
are significant accuracy drops.

For going deeper in the analysis of what can be
the reason for the domain gap, we can compare
the results of KITTI-Track vs Virtual KITTI. We

see that they are basically equal. Since Virtual
KITTI is a synthesized clone of KITTI-Track, we
think that the main reason of the accuracy drop is
not the virtual-to-real nature of the training images,
but the typical vehicle poses and backgrounds re-
flected in the training datasets, i.e. when comparing
Virtual KITTI/KITTI-Track with KITTI-Det Train.
In other words, KITTI-Det Train represents better
KITTI-Det Test since we built them from the same
data set. Note, in addition, that KITTI-Track come
from the same camera sensor as KITTI-Det Train
and Test, which does not avoid the accuracy gap.
Moreover, both SYNTHIA and GTA come from vir-
tual worlds and still produce a detector that performs
better than when using KITTI-Track.

We observe also that leaving out the ∼ 90% of the
images in KITTI-Det Train (X = 0.1) causes a drop
in accuracy of ∼ 6 points. In other words, in this
case once we have ∼ 316 manually annotated images
(∼ 10% of KITTI-Det Train), annotating ∼ 2, 848
more is required to push the DPM to its limit, which
is only ∼ 6 points better3. Active learning or ad hoc

3It is a fallacy to believe that, because good datasets are
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Figure 6: Images sampled from SYNTHIA dataset. Note that they are not always corresponding to a forward
facing virtual camera on-board a car.

heuristics can be tried to alleviate such manual anno-
tation effort. However, we observe that pre-training
the DPM with automatically collected virtual-word
data and using SA-SSVM for adapting the model,
makes such ∼ 316 images already very valuable, since
in all cases the domain-adapted vehicle detector im-
proves both the result of TAR0.1 and SRC (only
virtual-word data). We can see that the best case
is for SYNTHIA, which reduces the domain gap to
∼ 2 points from ∼ 12 points, and improves the re-
sult of TAR0.1 in ∼ 4 points. An additional obser-
vation is that pre-training (SRC) the detectors with
virtual-world data also allows to use active learning
techniques as we did in [68] and/or ad hoc heuristics
as we did in [80] for annotating more complementary
images (i.e. other more informative ∼ 316 ones) or

big, then big datasets are good [5].

collecting more but without human intervention (i.e.
self-annotation). We have not done it here for the
sake of simplicity, but it is reasonable to think that
this would reduce the domain gap even more.

Figure 11 compares vehicle detections based only
on the SYNTHIA samples we are using in this chap-
ter, and the result of applying SA-SSVM to them
with TAR0.1, in both cases setting the threshold of
the model classifier to operate in the FPPI=1 regime.
Note how SA-SSVM allows to obtain better results.

TAR0.5 (X = 0.5; see Fig. 9) and TAR-ALL ba-
sically show the same performance, so ∼ 1, 582 im-
ages have been annotated without a reward in DPM
performance. Of course, although an annotation-
training-test loop can be followed to avoid useless
vehicle annotations, a priori it is difficult to know
when to stop such manual annotations. On the other
hand, even using TAR0.5 data, starting with a pre-
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Figure 7: Images sampled from the GTA videogame.
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Figure 8: Results assuming X = 0.1 (see main text). In the box legend it is indicated the average miss rate
for each experiment. Thus, the lower the better.
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Figure 9: Results assuming X = 0.5 (see main text). In the box legend it is indicated the average miss rate
for each experiment. Thus, the lower the better.
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Figure 10: Results assuming X = 1 (ALL; see main text). In the box legend it is indicated the average miss
rate for each experiment. Thus, the lower the better.
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Figure 11: Vehicle detections when operating in the FPPI=1 regime. Left: DPM based on the SYNTHIA
data considered in this chapter (SRC). Middle: Using the TAR0.1 version of KITTI-Det Train. Right:
Adapting SRC by using TAR0.1 when applying SA-SSVM.
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trained model (SRC) on either SYNTHIA or GTA
allows to improve the performance of TAR-ALL, in
the case of SYNTHIA by ∼ 2 points with respect to
TAR0.5. Looking at SYNTHIA-Sub and GTA, which
has a similar number of samples (see Tab. 1), we can
argue that GTA could probably reach the same per-
formance than SYNTHIA if we would have the double
of GTA vehicles. In any case, what it is remarkable is
that it is more effective to have DPMs pre-trained in
virtual worlds than just doubling the number of man-
ually annotated target-domain images, i.e. at least
assuming a manual annotation procedure free of prior
knowledge about the current vehicle detector.

Even for X = 1 (see Fig. 10), i.e. combining the
data used to train TAR-ALL and SRC, pre-training
in virtual worlds is able to improve the performance
of TAR-ALL alone. SYNTHIA provides us ∼ 3
points of improvement with respect to TAR-ALL, be-
ing the overall best result. Using GTA as SRC even-
tually can provide such improvement too (again, by
extrapolation of its performance when comparing to
SYNTHIA-Sub).

In summary, the results presented and discussed so
far reinforce the take home messages we highlighted
in our previous works [36, 68, 77]; namely, combining
models/data pre-trained in virtual worlds with a rea-
sonable but low amount of real-world data through
domain adaptation, is a really practical paradigm
worth to explore for learning different kinds of mod-
els. As a matter of fact, according to the literature
reviewed in sections 1 and 2, nowadays this approach
is being widely adopted by the computer vision com-
munity.

Another interesting question that we did not ad-
dressed before refers to the degree of photo-realism,
i.e. if a higher degree would imply to learn more accu-
rate models and eventually not even requiring domain
adaptation. This is a very important question since a
extreme photo-realism may require hours for render-
ing a few images, while the degree of photo-realism of
the virtual worlds presented here is achieved in real
time using a standard modern gamer PC.

In our previous works we already saw that domain
adaptation was required even when you train and test
with real-world cameras. In other words, domain gap
was due to sensor differences (no matter if one of the

sensors operates in real or virtual worlds) and the
nature of the scenario where train and test images
are acquired (typical illumination, background, and
pose/view of dynamic objects). Because of this, our
believe was that a more photo-realistic world would
be just another sensor, still different from real-world,
and therefore domain gaps would persists. Note that
the experiments presented in this chapter reinforce
this hypothesis: (1) using Virtual KITTI and KITTI-
Track gives rise to SRC and domain-adapted detec-
tors of similar performance in all the cases, i.e. de-
spite the fact that KITTI-Track relies on the same
real-world sensor than KITTI-Det Train and Test,
while Virtual KITTI consists of synthesized data; (2)
moreover, despite the fact that GTA contains images
more photo-realistic than SYNTHIA, when using a
similar number of samples (SYNTHIA-Sub) we see
that the performance of the corresponding SRC and
the domain-adapted detectors is basically the same.

Recent works [41, 75] reinforce the idea that, once
a basic photo-realism is achieved (i.e. beyond Lam-
bertian illumination and simplistic object materials),
adding more and more photo-realism do not have a
relevant impact. Thus, in our opinion from the evi-
dences collected so far, Virtual KITTI and SYNTHIA
are sufficiently photo-realistic for the tasks we are ad-
dressing (i.e. vision-based object detection and im-
age semantic segmentation).

Another interesting point of analysis is if it is bet-
ter to just mixing virtual- and real-world data or
fine-tuning a pre-trained model on virtual-world data
with real-world samples. The former is what we
called cool world [70, 68], while SA-SSVM is an exam-
ple of the later. Because of that we have run a MIX
experiment with SYNTHIA and TAR-ALL, which
can be seen in Fig. 10(c). In this case, we have just
mixed the data and run an standard DPM learning
procedure. Note that the result is ∼ 3 points worse
than using SA-SSVM. Moreover, the training time of
MIX is much longer than the one of SA-SSVM, since
it uses samples from both domains and training from
scratch also requires more iterations to converge. If
we extrapolate these experiments to the deep CNNs
paradigm, a priori we would think than fine-tuning
is the proper approach. However, when working in
[50, 51], i.e. in semantic segmentation based on deep
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CNNs, using the appropriate mini-batch scheme to
weight the relevance of the samples as a function to
their domain (virtual or real), we obtained better per-
formance than with fine-tuning. Therefore, regard-
ing this topic, we have no clear conclusions yet. Of
course, the advantage of fine-tuning would be avoid-
ing to revisit the source data; thus, this is a point to
keep researching.

Overall, our research and the research presented
so far by the computer vision community, led us to
insist in the adoption of the paradigm where virtual
worlds and domain adaptation techniques are used
to train the desired models. Moreover, we think that
the degree of photo-realism like the presented already
in datasets such as Virtual KITTI and SYNTHIA is
sufficient for this task. In addition, although in this
chapter we have focused on DPM-based vehicle detec-
tion, we think the conclusions can be extrapolated to
other computer vision tasks where the visual appear-
ance is important (e.g. object detection in general
and semantic segmentation). Of course, it is worth
to note that at this moment the best results on the
KITTI car detection challenge are dominated by ap-
proaches based on deep CNNs, providing astonishing
high performances in the moderate setting, far be-
yond DPM approaches. Such benchmark seems to
be challenging enough for DPM, but still is a small
proportion of the real-world and this will be the real
challenge for deep CNNs. Therefore, we also think
that our conclusions will be extrapolated from DPM
to other powerful models such as deep CNNs when
addressing more challenging scenarios; note that in
Sect. 2 we have mentioned already that even deep
CNNs require domain adaptation. On the other
hand, what is expected is that deep CNNs would re-
quire less domain adaptation than DPM since they
are models with more capacity to generalize across
domains.

5 Conclusion

In this chapter we have shown how virtual worlds
are effective for training visual models when com-
bined with domain adaptation techniques. Although
we have focused on DPM and vehicle detection as

proof-of-concept, we believe that the conclusions ex-
trapolate to other visual tasks based on more com-
plex models such as deep CNNs. We have presented
results which suggest that extreme photo-realism is
not necessary, i.e. the degree of photo-realism al-
ready achieved in datasets such as Virtual KITTI and
SYNTHIA is sufficient, provided domain adaptation
would be necessary even when relying on more photo-
realistic datasets (here GTA).

Looking into the future, we think a best prac-
tice would be to design sets of relatively controlled
virtual-world scenarios, designed to train, debug and
test visual perception and other AI capabilities (Vir-
tual KITTI and SYNTHIA are examples of this). In
other words, with the knowledge accumulated so far,
we do not bet for building a gigantic virtual world to
try to avoid domain gap issues. This would be really
difficult to build and handle. We prefer to pursue do-
main adaptation to save any existing virtual-to-real
world gap. However, we think the research must go
into the direction of unsupervised domain adaptation
for allowing the systems trained in virtual worlds to
self-adapt to real-world scenarios. An example in this
line is the approach we presented in [80], where man-
ual annotations were not required to train a domain
adapted pedestrian detector for an on-board moving
camera setting. However, this approach performs the
adaptation off-line, which can be perfectly right for
many applications (e.g. adapting pre-trained surveil-
lance systems to different places), but the real chal-
lenge is to do it on-line.
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