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Abstract

Image based human detection remains as a challenging problem. Most promis-
ing detectors rely on classifiers trained with labelled samples. However, labelling
is a manual labor intensive step. To overcome this problem wepropose to collect
images of pedestrians from a virtual city,i.e., with automatic labels, and train a
pedestrian detector with them, which works fine when such virtual-world data are
similar to testing one,i.e., real-world pedestrians in urban areas. When testing data is
acquired in different conditions than training one,e.g., human detection in personal
photo albums, dataset shift appears. In previous work, we cast this problem as one
of domain adaptation and solve it with an active learning procedure. In this work,
we focus on the same problem but evaluating a different set offaster to compute
features,i.e., Haar, EOH and their combination. In particular, we train a classifier
with virtual-world data, using such features and Real AdaBoost as learning ma-
chine. This classifier is applied to real-world training images. Then, a human oracle
interactively corrects the wrong detections,i.e., few miss detections are manually
annotated and some false ones are pointed out too. A low amount of manual anno-
tation is fixed as restriction. Real- and virtual-world difficult samples are combined
within what we callcool worldand we retrain the classifier with this data. Our ex-
periments show that this adapted classifier is equivalent tothe one trained with only
real-world data but requiring 90% less manual annotations.
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1 Introduction

Image based human detection is of paramount interest due to its potential applica-
tions in fields such as advanced driving assistance, video surveillance and media
analysis. However, by reading some recent surveys of the field [10, 14, 9] we see
that even detecting non-occluded standing humans remains challenging. This is not
surprising due to the great variety of backgrounds (scenarios, illumination) in which
humans are present, as well as their intra-class variability (pose, clothe, occlusion).
Nowadays, the most relevant baseline human detector relieson a (holistic) human
classifier that uses the so-called histograms of oriented gradients (HOG) as features,
and the support vector machines (SVMs) as learning algorithm [7, 6]. New methods
have been developed on top of this baseline in order to take into account relative
pose of human parts [12], to handle occlusions [30], for taking advantage of color
[29], etc.

One important aspect of a human detector is its computational cost. HOG fea-
tures are very effective but expensive to compute. Some works tried to speed up its
computation by using integral histograms [21] or specific hardware [23]. It seems
that the approach of using integral features is the most promising one. Forpedes-
trian1 detection it was used first with Haar features combined with AdaBoost [26].
It was extended with Edge Orientation Histograms (EOH) features too [13]. More
recently [8] presented a detector based on different integral features, such as color
and gradient orientations, which is one of the best performing ones in the state of
the art. This work was extended by [3] getting the fastest pedestrian detector until
now, running at even more than 100 frames per second.

One can deduce that the most promising human detectors rely on classifiers de-
veloped by following the discriminative paradigm,i.e., trained with labelled sam-
ples. Being integral features and AdaBoost key ingredients. However, labelling is
a manual labor intensive step, especially, in cases like human detection where la-
belling objects (humans) means to provide bounding boxes atleast. Note that this
is more costly for ahuman labellerthan just answering toyes/no-questions like
is there any human in this image?(i.e., without specifyingwherein the affirmative
cases). In addition, it is well accepted that having sufficient variability in the labelled
samples is decisive to train classifiers able to generalize properly [5]. However, tra-
ditional (passive) manual labelling do not evaluate the degree of variability achieved
by the labelled samples. A common approach is assuming that the larger the set of
labelled samples the higher the variability. However, justsubjectively adding more
examples does not guarantee higher variability,e.g., it can happen that we are just
adding human samples too similar to the ones we already collected.

In order to obtain good samples to train as well as significantly reducing human
labelling effort, in [19] we used a video game to collect cityimages with automati-
cally labelled pedestrians (Fig. 1). Using such virtual-world data we trained a pedes-
trian classifier that was used within a pedestrian detector operating in real-world
images. We employed HOG as pedestrian descriptor and linearSVM as learning

1 We use the termpedestrianto refer to a human as a traffic participant.
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Fig. 1 Virtual-world images with pixel-level groundtruth of pedestrians.

machine. The results provided by the virtual-world based pedestrian detector were
equivalent to a counterpart detector whose pedestrian classifier was trained on real-
world images.

In [25, 24] we applied the same procedure for detecting humans in more general
images, for instance, in holiday photos. In this case the performance shown by the
virtual-world based pedestrian detector was far worse fromthe one obtained by its
real-world counterpart. In fact, we illustrated how the problem is the same when
training and testing with real-world data coming from different domains. In other
words, we were suffering dataset shift, but not because the training data was from
virtual-world but just because it came from a domain different than the one where
the pedestrian detector must operate,e.g., training with urban sequences and test-
ing in landscape or indoor scenarios. Accordingly, we cast the problem in a domain
adaptation framework based on active learning,i.e., we follow a semi-supervised
domain adaptation approach (Fig. 2). Such framework allowed us to obtain the de-
sired performance by combining our virtual-world data withjust a few real-world
one (25%) actively labelled.

In [19, 25, 24] we focused on HOG/linear-SVM. In this chapterwe append our
study to Haar, EOH and Haar with EOH descriptors, employing AdaBoost as learn-
ing algorithm. This is an important setting since, as we mentioned before, it can
lead to fast pedestrian detectors thanks to the use of integral images and decision
cascades. We will see that Haar/EOH/HaarEOH with Adaboost also present dataset
shift. Fortunately, as for HOG/linear-SVM, we will show howour semi-supervised
domain adaptation proposal provides the desired results inthis case. We restrict
more the number of allowed real-world pedestrian annotations, i.e., those done man-
ually. In [19, 25, 24] we allowed the 25% of the virtual-worldpedestrians; here we
have reduced it to 10%. User interaction comes in the form of ahuman oracle who
actively annotates some difficult samples from real-world images.

The rest of the chapter is organized as follows. Sect. 2 presents the HaarEOH
AdaBoost human detection method. In Sect. 3 we show the details of the proposed
semi-supervised domain adaptation algorithm. In Sect. 4 wepresent and discuss the
obtained results. Finally, Sect. 5 summarizes our conclusions.
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Fig. 2 Our proposal in a nutshell: domain adaptation based on active learning.

2 HaarEOH-based pedestrian detection

2.1 Detection Architecture

A pedestrian detector,scansan image with a window determining if it contains a
pedestrian (positive) or not (negative) by using a learnt pedestrian classifier which
comes from alearning machineprocess. The classifier gets as input the features
computed over each window and outputs its class,i.e., positive or negative. Since
multiple positive windows can be detected for a single pedestrian, we mustselecta
representative one,i.e., the windowdetectingthe pedestrian. Let us briefly review
the features, learning machine, scanning, and selection.

2.1.1 Features

We use two different features that can be computed using the so-called integral
image which has been demonstrated that speeds up object detection [28] and that
recently is attracting much interest [8, 3].
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Fig. 3 Left: Haar filters.Example of a filter with parameters(x,y,w,h) with basic forms of the
Extended Haar set and examples of filters that give high response in regions containing pedestrians.
Right: EOH features.The feature is defined as the relation between two orientations of a region.
In this case, vertical orientations are dominant with respect to the diagonal orientations (k3), so the
feature will have a high value.

Haar filters were introduced in [18] to detect pedestrians using a static camera.
A single feature of this set is defined as the difference of illumination between two
areas (white and black, see Fig. 3 left). The sum of the pixel values of a given region,
E(R), can be efficiently computed by only four accesses to the integral image. The
feature value is:

FeatureHaar(R, f ) =
E(Rwhite)E(Rblack)

w∗h
√

(E(R))2−E2(R)+ ε
,

whereRwhite andRblack are the white and the black rectangles of the filterf , andw,
h refer to the width and height of rectangleR. E2(R) is the sum of the square of the
pixels of a given region. Note that the denominator is a contrast normalization factor
that depends on the region size and standard deviation. Originally, [18] presents
three basic filters, namely (a)(b)(c) in Fig. 3. Posteriorly, [27] add filters (d) and (e)
to the previous set in order to achieve face detection and forpedestrian detection
using a static camera in [28], this set is referred in this chapter as Simple Haar set.
In our work, we use filters from (a) to (h), coming to use the Extended Haar set
described in [17] to detect faces.

EOH features were proposed in [16] for face detection and used for pedestrian
detection in [13] as well. These features are based on gradient information, which
not only maintains invariance to global illumination changes, but is also able to
extract shape information difficult to capture by Haar filters. This feature extracts
similar information as the HOG feature, which is the standard pedestrian detection
descriptor, but EOH can be easily computed by using integralimages. Features are
computed as follows (see Fig. 3). First, the image derivative is computed with a So-
bel mask to get the edge orientation. Then, the derivative image pixels are classified
according to its edge orientation intoK (in our caseK = 6) images corresponding to
K orientation bins. Therefore, a pixel in binkn ∈ K contains its gradient magnitude
if its orientation is insidekn range, otherwise is null. Integral images are now used
to store the accumulation image of each of the edge bins. Finally, the feature value
is defined as the ratio between two orientations,ki andk j , of regionR:
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FeatureEOH(ki ,k j ,R) =
Eki (R)+ ε
Ek j (R)+ ε

.

If the feature value is greater than a given threshold, then the orientationki is dom-
inant to orientationk j at the regionR, which can be exploited as a weak hypothesis
too. The small valueε is added to the factors for smoothing purposes.

2.1.2 Learning machine

The feature descriptors we use are of high dimensionality. So, we need a machine
learning algorithm able to work in such spaces. Boosting algorithms are the most
suitable ones as they automatically select a subset of the features that best char-
acterize the problem to learn. From the different boosting proposals, we use real
AdaBoost [22], more specifically, we use the implementationof [20]. The key idea
is to build a strong classifier by combining a set of weak classifiers.

In an iterative manner, real AdaBoost chooses the weak classifiers that best clas-
sify the training set. In the algorithm, each sample has a weight depending on prior
classifications; this value is increased in case it has been missclassified by previous
rules. Hence, at each iteration, the algorithm focuses its efforts on previously miss-
classified samples. Finally, the strong classifier is composed byn weak classifiers,
wheren is defined by the user and usually is much lower than the total number of
features of the samples. In our case we collect a total of 22,848 features per window
for the Haar descriptor and 42,840 for the EOH one. We restrict the strong clas-
sifier to select the same amount of weak classifiers as the dimension of the HOG
descriptor we used in [25, 24], which is 3780.

In fact, the learning process could continue until constructing a cascade of strong
classifiers (as in [27] for face detection), where the first layer discards clear non-
pedestrians, the second layer would discard less clear non-pedestrians and so on,
being pedestrians those windows that are not rejected at anylayer. This cascade
procedure speeds up detection as most of the windows are rejected at the early stages
of the cascade. However, in this chapter we are more interested in showing that
the pedestrian detector based on Haar and EOH can be learnt using virtual-world
samples and domain adaptation techniques. Therefore, we only present results based
on training a single layer with the real AdaBoost algorithm.

2.1.3 Scanning

As scanning procedure we apply the pyramidal sliding window[6]. It consists in
constructing a pyramid of scaled images, for the range of scales in which we want to
detect the pedestrians. The bottom of the pyramid (higher resolution) is the original
image, while the top is limited by the size of the smaller pedestrian to detect. At
the pyramid leveli ∈ {0,1, . . .}, the image size isddx/si

pe× ddy/si
pe, beingdx ×

dy the dimension or the original image (i = 0), andsp a provided parameter. We
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down-sample the image using bilinear interpolation with anti-aliasing as in [12] for
building the lower resolution levels of the pyramid. Then, acanonical window (CW)
of fixed size scans each pyramid level according to stridessx andsy, in x andy axes,
respectively. We set<sx,sy,sp >:=<8,8,1.2> like in [6] as it is a good tradeoff
between processing time and final detection performance. This scanning procedure
is not the standard for pedestrian detectors based on descriptors as Haar or EOH.
Haar and EOH are usually scaled themselves instead of using an image pyramid.
We have experimentally seen that, in general, the pyramid with anti-aliasing boosts
the performance of the pedestrian detectors based on self-scaled descriptors.

2.1.4 Selection

Detection over multiple scales and different positions usually yields several detec-
tions which frequently refer to a single object. In order to obtain a unique detection
per object (pedestrian), we apply the non-maximum-suppression approach proposed
in [15].

2.2 Datasets: Real- and Virtual-world samples

To perform our experiments we use the generic real-world dataset INRIA [7, 6] and
our virtual-world one [19]. The widespread INRIA dataset for human detection con-
tains color images of different resolution (320×240 pix, 1280×960 pix, etc.) with
persons photographed in different scenarios (urban, nature, indoor). INRIA data in-
cludes a set of training images with the bounding box annotation of 1,208 humans
(that can be vertically mirrored to obtain 2,416 positive samples). In addition, 1,218
human-free images are provided for training. For testing, INRIA includes a dataset
consisting of 563 annotated humans in 288 images, and 453 human-free images.

The virtual-world dataset [19] is generated with Half Life 2videogame by city
driving. It is composed of color images of 640×480 pix. From the provided virtual-
world data we mimic INRIA settings for fair comparison. Thus, we use 1,208
virtual-world humans that are vertically mirrored to obtain 2,416 ones, as well as
1,218 human-free virtual-world images. Virtual-world data is only used for train-
ing, i.e., for being domain adapted to the training data of INRIA.

2.3 Training with virtual- vs real-world samples

As we mentioned in Sect. 2.1.1, in this chapter we use Haar, EOH and HaarEOH
features and real AdaBoost learning machine for training human/pedestrian classi-
fiers. Accordingly, we train the INRIA human classifier usingthe INRIA training
set and the virtual-world pedestrian one using virtual-world training data. During
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Fig. 4 Top: virtual pedestrians and city scenarios. Bottom: INRIA photographs with humans and
diversified scenarios as city, countryside, beach, etc. Humans appear also in such scenarios. Do-
main adaptation by batch active learning (Fig. 2) will bring together virtual-world samples and
difficult real ones to learn real-world human classifiers.

training,bootstrappingis used,i.e., appending the respective negative training sets
with hard negative samples and re-training. Hard negativesare collected from the
corresponding negative training images by applying the initially learnt classifier.
The process is iterated until very few new negatives are incorporated. In practice,
these particular training sets saturate with a single step.

2.4 Testing with real-world images: dataset shift

In order to evaluate the performance of the pedestrian detectors we follow the pro-
cedure proposed in [9] for this purpose. This means that we use performance curves
of miss rate vs false positives per image. We focus on the range FPPI=[0.1,1] of
such curves, where we provide theaverage miss rate(AMR) by averaging its val-
ues taken at steps of 0.01. Accordingly, such an AMR is a sort of expected miss rate
when having one false positive per five images.

Fig. 5 plots the performance of human detectors based on INRIA and virtual-
word training data, applied to INRIA testing set. Comparingthe performance of
the HOG/linear-SVM and the HaarEOH/real-AdaBoost we realize that is almost
the same. Moreover, we show the results of three different pedestrian detectors
based on different sets of features: Haar/real-AdaBoost, EOH/real-AdaBoost and
HaarEOH/real-AdaBoost. The pedestrian detectors trainedon the INRIA dataset
clearly outperforms their counterparts trained on the virtual-world one. The gap of
performance is over 10 points. We argue, as in [25, 24] that this gap is due to dataset
shift. In the next section we will explain how to solve it using a semi-supervised
domain adaptation technique.
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HOG INRIA (21.29)
Haar INRIA (31.19)
Haar Virtual (46.86)
EOH INRIA (30.25)
EOH Virtual (42.75)
HaarEOH INRIA (21.54)
HaarEOH Virtual (37.59)

Fig. 5 Per-image evaluation of different pedestrian detectors. The notationFeature DBmeans that
the corresponding classifier was learnt usingFeature, andDB training data. In all cases the number
inside the parenthesis indicates the average miss rate (AMR) in percentage, for the plotted FPPI
range.

3 Semi-supervised domain adaptation

The dataset shift problem can be solved with a domain adaptation technique. In this
case we use an active learning procedure similar to the one weemployed in [25, 24]
but using other kind of sample selection methods to reduce the amount of needed
supervision during the annotation of the active samples. Additionally, we reduce
the amount of allowed actively collected samples from the 25% in [25, 24] to 10%,
which is a much more restrictive scenario.

Let us start by introducing some notation and concepts. We denote byDs andDt

two domains from which we observe samples. We refer toDs as thesourcedomain,
while Dt is thetargetdomain. Our problem is that given a samplext ∈ Dt , we want
to know if xt ∈ wt , usingwt to denote the samples inDt with a particular property in
which we are interested in. We want to face this problem by learning a classifierC
able to answer ifxt ∈ wt . To learnC we want to follow a discriminative paradigm,
i.e., learning from labelled samples. Ifxt ∈ Dt , its corresponding label̀xt equals
+1 if xt ∈ wt and−1 otherwise. It turns out that we have very few labelled samples
drawn fromDt to learnt a reliable classifier. However, we have sufficient labelled
samples drawn fromDs. This scenario is called semi-supervised. If the distributions
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Fig. 6 Labelling tool. For each displayed image, the human oracle (Fig. 2) performs as follows:
(1) if there are not humans, it marks the image ashuman-free; (2) if there are humans, some of
them have been detected by the previous classifier (green bounding box), but others may not (not
framed). The undetected humans must be manually framed by the human oracle (yellow bounding
box).

of the samples inDs andDt are uncorrelated, then the task would be impossible.
However, if they have a sufficient correlation, then we can cast the problem as one
of domain adaptation[2]. More specifically, we can use the large amount of labelled
data fromDs and a low amount of labelled data fromDt to learn aC with chances
of succeeding in the task of classifying unseen samples fromDt . Roughly speaking,
ourDs is the set of image windows cropped from virtual-world images, and ourDt

the set of image windows cropped from the real-world images in which we want to
detect humans. A samplext is just an image window,wt is the property of imaging
a human (humanclass), andC a human classifier.

Since we can collect in a cheap way as many samples as we need from our virtual
cities, the setting forDs holds. However, we assume that we start with no labelled
samples fromDt . As we have seen in Sect. 2.4, a pedestrian classifier trainedon
virtual-world samples does not perform as good as we expect when applied to some
real-world images. However, the obtained performance allows us to assume that
there is sufficient correlation betweenDs andDt , to theeyesof the features and
base learning machine we use. Of course, as we deduce also from results in Fig. 5,
Ds andDt are not equal at all. In our case,Dt is more general (i.e., human detection
is more general than pedestrian detection) because more types of scenarios are faced
(Ds is urban like).
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Therefore, our problem reduces to obtain some labelled samples fromDt , in a
cheap way. For that, our proposal consists in an extension ofthe active learning
procedure proposed in [25, 24] using ahuman oracleto labeldifficult samplesand
to confirmeasy samplesas right classified. All these samples are coming fromDt .
Usually, the difficult samples are defined as those falling inthe ambiguity region of
the base classifier at hand,i.e., the area close to the decision boundary. However, in
these cases,Ds andDt follow the same distribution and the aim is to label as few
samples as possible but being meaningful. Our case, however, is different. Let us
say thatCs has been learnt fromDs and thatxt ∈ Dt ∧xt ∈ wt . If Cs(xt) is a negative
value, large in magnitude, it turns out that from the viewpoint of Ds, xt is far from
being inwt , from imaging a human in our case. In our domain adaptation proposal,
we do not consider suchxt as an outlier. On the contrary, these are the informative
samples for adapting the domains,i.e., the samples that must label the human oracle.
As an extension we also include easy samples that are those ones falling out of the
ambiguity region.

Accordingly, a given collection of real-world images it is processed usingCs

to detect pedestrians. Detections are kept. By detections we consider those image
windows xt for which |Cs(xt)| ≥ th. For our real AdaBoost,|Cs(xt)| ≥ 1. Then,
it is started a working session in which such images and detections are presented
to the human oracle. The responsibility of the oracle is to say if a given image
contains no humans (yes/no-question), to label missed humans with a rectangular
bounding box (Fig. 6) and confirm the correct detections. Once the whole sequence
is processed by the oracle, a new classifier is trained using the labelled samples that
where used to buildCs (virtual-world ones) as well as the new collected difficult
samples (real-world ones). We callcool world2 to the joint space of virtual- and
real-world samples. This type of active learning is termed as batch mode, because
a set of images is processed before re-training. The overallapproach is summarized
in Fig. 2. We think that a noticeable fact is to use virtual- and real-world samples to
train a human classifier. This kind of process can be iterated.

4 Experimental results

Plots of Fig. 5 show the effect of the dataset shift on the performance. To solve
this problem we employed the semi-supervised domain adaptation technique pro-
posed in section 3. Fig. 7 and 8 show these experiments in three different plots:
one for Haar, other for EOH and the last one for HaarEOH. The plots compare the
performance of the passive trained classifiers shown in Fig.5 with the active ones
explained in section 3. Four experiments are tested following the active learning
procedure. Each experiment relies on a different manner of collecting the samples.
As a reference we show two baselines that differ in the data used to train their clas-
sifiers:INRIA 10%one uses a 10% of the INRIA training dataset and theRandone

2 We use thecool worldterm as a tribute to the 1992 movie with that title. In this movie, there is a
real world and a cool world, the latter shared by real humans andcartoons.
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Fig. 7 Semi-supervised domain adaptation experimental results
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Fig. 8 Semi-supervised domain adaptation experimental results

uses the virtual-world training set plus a 10% of the INRIA training dataset.Act
refers to the active learning experiments explained in section 3. They differ on the
oracle annotation procedure. InAct+ the oracle labels the difficult samples,i.e., the
not detected humans, by framing them with a bounding box. InAct- the oracle anno-
tates the easy samples,i.e., the correctly detected humans, by just eliminating false
positives. Note thatAct- requires much less annotation effort. Accordingly,Act±
refers to the combined annotation effort ofAct+ andAct-.

From the experiments we can draw the following observations:

• Reducing the training data of INRIA to the 10% decreases the performance of
any trained detector by more than 10 points of AMR.

• All detectors benefit from adding a 10% of random INRIA data tothe virtual-
world set. This benefit varies from 6 to 10 points of performance.

• Almost all of the testedAct experiments outperform theRandandINRIA 10%
baselines. Note that the trivial procedure of adding randomdata performs really
good in other contexts and it is usually difficult to outperform. Our proposed
active learning procedures clearly outperform the random one.

• For Haar and EOHAct+ andAct-perform equally but requiringAct- less anno-
tation effort. However, for HaarEOHAct+ performs better.

• In all the casesAct± outperforms the baselines and the otherAct experiments,
even slightly outperforming the INRIA trained pedestrian detector for the most
important case, the HaarEOH.
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5 Conclusion

In this chapter we have addressed a core problem in the field ofhuman detection,
namely, the acquisition at low cost of good samples to train.In order to collect most
of the human and background samples we rely on players/drivers of a videogame,
i.e., we automatically collect labelled samples while enjoyinga game. With them
we learn a virtual-world based pedestrian classifier that must work as a human clas-
sifier in images depicting the real world. In INRIA images, the virtual-world trained
pedestrian classifier cannot reach the performance of a classifier learnt using data
manually labelled for training in such dataset. In order to keep the advantage of
the cost-free labelling in virtual-worlds, we have cast theproblem of transforming
the virtual-world based pedestrian classifier into a human classifier for real-world
images of general scenarios as a domain adaptation problem.To perform the adap-
tation, we have used a batch active learning technique that,with just a few manually
labelled humans from the real-world images, is able to reachthe same performance
than a human classifier entirely trained from a much large amount of manually la-
belled data. Ultimately, our human classifier has been trained by using HaarEOH
features that can be computed fast using integral images. Weobserve that, in a way,
we have adopted a multimodal approach from two view points: (1) using two differ-
ent types of raw data (virtual and real), and (2) collecting the data by playing in the
one hand and by working on the other. Besides, user interaction is key as we need
a human oracle to annotate real-world samples. Finally, we would like to mention
that our proposal can be extended in the future in several ways,e.g., detecting other
targets and incorporating spatio-temporal features.
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