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Abstract

Image based human detection remains as a challenging proMest promis-
ing detectors rely on classifiers trained with labelled daspHowever, labelling
is a manual labor intensive step. To overcome this problenprwpose to collect
images of pedestrians from a virtual citye., with automatic labels, and train a
pedestrian detector with them, which works fine when sudiuaitworld data are
similar to testing ond,e., real-world pedestrians in urban areas. When testing data is
acquired in different conditions than training oeeg, human detection in personal
photo albums, dataset shift appears. In previous work, \wethes problem as one
of domain adaptation and solve it with an active learningcpdure. In this work,
we focus on the same problem but evaluating a different séstér to compute
featuresj.e., Haar, EOH and their combination. In particular, we trainassifier
with virtual-world data, using such features and Real Ada@@as learning ma-
chine. This classifier is applied to real-world training gea. Then, a human oracle
interactively corrects the wrong detections,, few miss detections are manually
annotated and some false ones are pointed out too. A low a@mbumanual anno-
tation is fixed as restriction. Real- and virtual-world ditfit samples are combined
within what we callcool worldand we retrain the classifier with this data. Our ex-
periments show that this adapted classifier is equivalethtet@ne trained with only
real-world data but requiring 90% less manual annotations.
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1 Introduction

Image based human detection is of paramount interest dig potential applica-
tions in fields such as advanced driving assistance, vide@idance and media
analysis. However, by reading some recent surveys of the: [fl€, 14, 9] we see
that even detecting non-occluded standing humans remaaliecging. This is not
surprising due to the great variety of backgrounds (scesaitiumination) in which
humans are present, as well as their intra-class variafjdse, clothe, occlusion).
Nowadays, the most relevant baseline human detector w@ties(holistic) human
classifier that uses the so-called histograms of orientedigints (HOG) as features,
and the support vector machines (SVMs) as learning algotfith 6]. New methods
have been developed on top of this baseline in order to takeaiccount relative
pose of human parts [12], to handle occlusions [30], forigkidvantage of color
[29], etc.

One important aspect of a human detector is its computdttws. HOG fea-
tures are very effective but expensive to compute. Someswoied to speed up its
computation by using integral histograms [21] or specificdiaare [23]. It seems
that the approach of using integral features is the most iginghnone. Fompedes-
trian® detection it was used first with Haar features combined witlaBoost [26].
It was extended with Edge Orientation Histograms (EOH)uie=t too [13]. More
recently [8] presented a detector based on different intdgatures, such as color
and gradient orientations, which is one of the best perfognanes in the state of
the art. This work was extended by [3] getting the fastesep&thn detector until
now, running at even more than 100 frames per second.

One can deduce that the most promising human detectorsnediassifiers de-
veloped by following the discriminative paradigirg., trained with labelled sam-
ples. Being integral features and AdaBoost key ingrediditsvever, labelling is
a manual labor intensive step, especially, in cases likeamudetection where la-
belling objects (humans) means to provide bounding boxésaat. Note that this
is more costly for shuman labellerthan just answering tges/nequestions like
is there any human in this imagéi?e., without specifyingwherein the affirmative
cases). In addition, it is well accepted that having sufficiariability in the labelled
samples is decisive to train classifiers able to generatizpegply [5]. However, tra-
ditional (passive) manual labelling do not evaluate theeegf variability achieved
by the labelled samples. A common approach is assumingtbdatger the set of
labelled samples the higher the variability. However, gugtjectively adding more
examples does not guarantee higher variabiity, it can happen that we are just
adding human samples too similar to the ones we alreadyctetle

In order to obtain good samples to train as well as signifigaatiucing human
labelling effort, in [19] we used a video game to collect éityages with automati-
cally labelled pedestrians (Fig. 1). Using such virtuakHaaata we trained a pedes-
trian classifier that was used within a pedestrian detegberasing in real-world
images. We employed HOG as pedestrian descriptor and IB\ékl as learning

1 We use the terrpedestriarto refer to a human as a traffic participant.
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Fig. 1 Virtual-world images with pixel-level groundtruth of pedesns.

machine. The results provided by the virtual-world basedkp#ian detector were
equivalent to a counterpart detector whose pedestrianifitasvas trained on real-
world images.

In [25, 24] we applied the same procedure for detecting hsnramore general
images, for instance, in holiday photos. In this case théopmance shown by the
virtual-world based pedestrian detector was far worse fiteenone obtained by its
real-world counterpart. In fact, we illustrated how the lgemn is the same when
training and testing with real-world data coming from diéat domains. In other
words, we were suffering dataset shift, but not becauserétiirig data was from
virtual-world but just because it came from a domain différéaan the one where
the pedestrian detector must operate, training with urban sequences and test-
ing in landscape or indoor scenarios. Accordingly, we dasproblem in a domain
adaptation framework based on active learning, we follow a semi-supervised
domain adaptation approach (Fig. 2). Such framework allouseto obtain the de-
sired performance by combining our virtual-world data wiikt a few real-world
one (25%) actively labelled.

In [19, 25, 24] we focused on HOG/linear-SVM. In this chapter append our
study to Haar, EOH and Haar with EOH descriptors, employidgBoost as learn-
ing algorithm. This is an important setting since, as we moeed before, it can
lead to fast pedestrian detectors thanks to the use of aitegages and decision
cascades. We will see that Haar/EOH/HaarEOH with Adabdsstaesent dataset
shift. Fortunately, as for HOG/linear-SVM, we will show hawr semi-supervised
domain adaptation proposal provides the desired resultsisncase. We restrict
more the number of allowed real-world pedestrian annatatioe., those done man-
ually. In [19, 25, 24] we allowed the 25% of the virtual-wopéddestrians; here we
have reduced it to 10%. User interaction comes in the formrafraan oracle who
actively annotates some difficult samples from real-wardges.

The rest of the chapter is organized as follows. Sect. 2 ptethe HaarEOH
AdaBoost human detection method. In Sect. 3 we show thelslefahe proposed
semi-supervised domain adaptation algorithm. In Sect. grne@sent and discuss the
obtained results. Finally, Sect. 5 summarizes our cormhgsi
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Fig. 2 Our proposal in a nutshell: domain adaptation based on actiusihega

2 Haar EOH-based pedestrian detection
2.1 Detection Architecture

A pedestrian detectogcansan image with a window determining if it contains a
pedestrianositive or not (hegativé by using a learnt pedestrian classifier which
comes from dearning machingorocess. The classifier gets as input the features
computed over each window and outputs its class,positive or negative. Since
multiple positive windows can be detected for a single peidas we musselecta
representative onég., the windowdetectingthe pedestrian. Let us briefly review
the features, learning machine, scanning, and selection.

2.1.1 Features
We use two different features that can be computed usingdkmalted integral

image which has been demonstrated that speeds up objectiolet8] and that
recently is attracting much interest [8, 3].
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Fig. 3 Left: Haar filters.Example of a filter with parameters,y,w, h) with basic forms of the
Extended Haar set and examples of filters that give high responsgions containing pedestrians.
Right: EOH featuresThe feature is defined as the relation between two oriemisid a region.
In this case, vertical orientations are dominant with respettte diagonal orientationgd), so the
feature will have a high value.

Haar filters were introduced in [18] to detect pedestriarisgua static camera.
A single feature of this set is defined as the difference ofilhation between two
areas (white and black, see Fig. 3 left). The sum of the pixieles of a given region,
E(R), can be efficiently computed by only four accesses to thgjiatémage. The
feature value is:

E (Rwhite) E(Rblack)

Featuréhaar(Rv f) = Wk h\/(E(R))Z — EZ(R) Jrg’

whereRyhite and Ry ack are the white and the black rectangles of the fifteandw,

h refer to the width and height of rectand®eE?(R) is the sum of the square of the
pixels of a given region. Note that the denominator is a @sttnormalization factor
that depends on the region size and standard deviationin@ltig [18] presents
three basic filters, namely (a)(b)(c) in Fig. 3. Posterid2y] add filters (d) and (e)
to the previous set in order to achieve face detection angddestrian detection
using a static camera in [28], this set is referred in thiptdiaas Simple Haar set.
In our work, we use filters from (a) to (h), coming to use thedexted Haar set
described in [17] to detect faces.

EOH features were proposed in [16] for face detection and fmepedestrian
detection in [13] as well. These features are based on graifrmation, which
not only maintains invariance to global illumination chasgbut is also able to
extract shape information difficult to capture by Haar fdteFhis feature extracts
similar information as the HOG feature, which is the staddagdestrian detection
descriptor, but EOH can be easily computed by using intégrages. Features are
computed as follows (see Fig. 3). First, the image derigawcomputed with a So-
bel mask to get the edge orientation. Then, the derivatiegampixels are classified
according to its edge orientation inko(in our case&K = 6) images corresponding to
K orientation bins. Therefore, a pixel in b € K contains its gradient magnitude
if its orientation is insidek, range, otherwise is null. Integral images are now used
to store the accumulation image of each of the edge binsllfittee feature value
is defined as the ratio between two orientatidqasndk;, of regionR:
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Ek@ (R) +£

Featur i ki, R) = —/——~———.
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If the feature value is greater than a given threshold, therotientatiork; is dom-

inant to orientatiork; at the regiorR, which can be exploited as a weak hypothesis

too. The small value is added to the factors for smoothing purposes.

2.1.2 Learning machine

The feature descriptors we use are of high dimensionalidyw® need a machine
learning algorithm able to work in such spaces. Boostingritlyms are the most
suitable ones as they automatically select a subset of #tarés that best char-
acterize the problem to learn. From the different boostirgppsals, we use real
AdaBoost [22], more specifically, we use the implementatibf20]. The key idea
is to build a strong classifier by combining a set of weak dss.

In an iterative manner, real AdaBoost chooses the weakifitasghat best clas-
sify the training set. In the algorithm, each sample has gftalepending on prior
classifications; this value is increased in case it has begsctassified by previous
rules. Hence, at each iteration, the algorithm focusedfitste on previously miss-
classified samples. Finally, the strong classifier is coragd®/n weak classifiers,
wheren is defined by the user and usually is much lower than the tatalber of
features of the samples. In our case we collect a total o#BX@atures per window
for the Haar descriptor and 42,840 for the EOH one. We redtri strong clas-
sifier to select the same amount of weak classifiers as thendiore of the HOG
descriptor we used in [25, 24], which is 3780.

In fact, the learning process could continue until congingca cascade of strong
classifiers (as in [27] for face detection), where the firgetadiscards clear non-
pedestrians, the second layer would discard less cleapedestrians and so on,
being pedestrians those windows that are not rejected atagmey. This cascade
procedure speeds up detection as most of the windows acta@ijgt the early stages
of the cascade. However, in this chapter we are more intztént showing that
the pedestrian detector based on Haar and EOH can be leargtwidual-world
samples and domain adaptation techniques. Therefore, wpm@sent results based
on training a single layer with the real AdaBoost algorithm.

2.1.3 Scanning

As scanning procedure we apply the pyramidal sliding windéjv It consists in
constructing a pyramid of scaled images, for the range désdéawhich we want to
detect the pedestrians. The bottom of the pyramid (higteeiwéon) is the original
image, while the top is limited by the size of the smaller @tdan to detect. At
the pyramid levei € {0,1,...}, the image size i$dx/s,] x [dy/s,], beingdy x
dy the dimension or the original image=£ 0), andsp a provided parameter. We
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down-sample the image using bilinear interpolation witti-aliasing as in [12] for
building the lower resolution levels of the pyramid. Theraaonical window (CW)
of fixed size scans each pyramid level according to stisgasds, in x andy axes,
respectively. We set s, sy, sp >:=<8,8,1.2 > like in [6] as it is a good tradeoff
between processing time and final detection performands.stlanning procedure
is not the standard for pedestrian detectors based on pessras Haar or EOH.
Haar and EOH are usually scaled themselves instead of usinmgage pyramid.
We have experimentally seen that, in general, the pyrantid aviti-aliasing boosts
the performance of the pedestrian detectors based oncedéfesdescriptors.

2.1.4 Selection

Detection over multiple scales and different positionsaligwyields several detec-
tions which frequently refer to a single object. In order bdain a unique detection
per object (pedestrian), we apply the non-maximum-sugespproach proposed
in [15].

2.2 Datasets: Real- and Virtual-world samples

To perform our experiments we use the generic real-worldssatiNRIA [7, 6] and
our virtual-world one [19]. The widespread INRIA datasetlioman detection con-
tains color images of different resolution (32240 pix, 128 960 pix, etc.) with
persons photographed in different scenarios (urban, @andoor). INRIA data in-
cludes a set of training images with the bounding box aniwotatf 1,208 humans
(that can be vertically mirrored to obtain 2,416 positivenpées). In addition, 1,218
human-free images are provided for training. For testiNgRIA includes a dataset
consisting of 563 annotated humans in 288 images, and 45armee images.

The virtual-world dataset [19] is generated with Half Lifevitleogame by city
driving. It is composed of color images of 64880 pix. From the provided virtual-
world data we mimic INRIA settings for fair comparison. Thwge use 1,208
virtual-world humans that are vertically mirrored to obt&,416 ones, as well as
1,218 human-free virtual-world images. Virtual-world a@as$ only used for train-
ing, i.e., for being domain adapted to the training data of INRIA.

2.3 Training with virtual- vsreal-world samples

As we mentioned in Sect. 2.1.1, in this chapter we use HaaH B HaarEOH
features and real AdaBoost learning machine for trainingdm/pedestrian classi-
fiers. Accordingly, we train the INRIA human classifier usithg INRIA training
set and the virtual-world pedestrian one using virtualfdidraining data. During
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Fig. 4 Top: virtual pedestrians and city scenarios. Bottom: INRIA plgetphs with humans and
diversified scenarios as city, countryside, beach, etc. Humgpeaa also in such scenarios. Do-
main adaptation by batch active learning (Fig. 2) will brimgéther virtual-world samples and
difficult real ones to learn real-world human classifiers.

training, bootstrappings used,.e., appending the respective negative training sets
with hard negative samples and re-training. Hard negativescollected from the
corresponding negative training images by applying thgalhj learnt classifier.
The process is iterated until very few new negatives arerparated. In practice,
these particular training sets saturate with a single step.

2.4 Testing with real-world images: dataset shift

In order to evaluate the performance of the pedestrian tetewe follow the pro-
cedure proposed in [9] for this purpose. This means that wg@agormance curves
of miss rate vs false positives per imag¥e focus on the range FPR0-L,1] of
such curves, where we provide theerage miss ratéAMR) by averaging its val-
ues taken at steps of 0.01. Accordingly, such an AMR is a $@tpected miss rate
when having one false positive per five images.

Fig. 5 plots the performance of human detectors based onANRU virtual-
word training data, applied to INRIA testing set. Comparthg performance of
the HOG/linear-SVM and the HaarEOH/real-AdaBoost we peathat is almost
the same. Moreover, we show the results of three differedegteian detectors
based on different sets of features: Haar/real-AdaBod3tl/Eeal-AdaBoost and
HaarEOH/real-AdaBoost. The pedestrian detectors traomethe INRIA dataset
clearly outperforms their counterparts trained on theuairtvorld one. The gap of
performance is over 10 points. We argue, as in [25, 24] thagdp is due to dataset
shift. In the next section we will explain how to solve it ugia semi-supervised
domain adaptation technique.
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Fig. 5 Per-image evaluation of different pedestrian detectors. BketionFeature DBmeans that
the corresponding classifier was learnt udtiegture andDB training data. In all cases the number
inside the parenthesis indicates the average miss rate (AMRSroeptage, for the plotted FPPI
range.

3 Semi-supervised domain adaptation

The dataset shift problem can be solved with a domain adaptiichnique. In this
case we use an active learning procedure similar to the oreanpéoyed in [25, 24]
but using other kind of sample selection methods to redueathount of needed
supervision during the annotation of the active sampledithmhally, we reduce
the amount of allowed actively collected samples from th 25[25, 24] to 10%,
which is a much more restrictive scenario.

Let us start by introducing some notation and concepts. \Weteey Zs and
two domains from which we observe samples. We referdas thesourcedomain,
while % is thetargetdomain. Our problem is that given a samplec Z;, we want
to know if . € wt, usingw; to denote the samples {7 with a particular property in
which we are interested in. We want to face this problem bynieg a classifiefs’
able to answer ik € w;. To learns” we want to follow a discriminative paradigm,
i.e., learning from labelled samples. ¥ € %, its corresponding labél,, equals
+1if % € wy and—1 otherwise. It turns out that we have very few labelled saspl
drawn fromZ; to learnt a reliable classifier. However, we have sufficiabelled
samples drawn fron&s. This scenario is called semi-supervised. If the distidng
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Fig. 6 Labelling tool. For each displayed image, the human oracle @igerforms as follows:
(1) if there are not humans, it marks the imagehaman-free (2) if there are humans, some of
them have been detected by the previous classifier (green inguoaix), but others may not (not
framed). The undetected humans must be manually framed by the huadd @ellow bounding
box).

&
Status

Pomtes DizdT1, V=168) BBos (=146, V=47, AR=0136417) 8Box (X1=363 V1=188 X3=511. V2.

of the samples %5 and % are uncorrelated, then the task would be impossible.
However, if they have a sufficient correlation, then we cast t@e problem as one
of domain adaptatiofi2]. More specifically, we can use the large amount of lalgelle
data fromZs and a low amount of labelled data fraf to learn a& with chances

of succeeding in the task of classifying unseen samples frarRoughly speaking,
our s is the set of image windows cropped from virtual-world imsgend our%;

the set of image windows cropped from the real-world imagestiich we want to
detect humans. A sampigis just an image windowy; is the property of imaging

a human ljumanclass), an&” a human classifier.

Since we can collect in a cheap way as many samples as we oeeddr virtual
cities, the setting fotzs holds. However, we assume that we start with no labelled
samples fromZ;. As we have seen in Sect. 2.4, a pedestrian classifier trained
virtual-world samples does not perform as good as we expeehwapplied to some
real-world images. However, the obtained performancenallas to assume that
there is sufficient correlation between, and %, to the eyesof the features and
base learning machine we use. Of course, as we deduce atsodsults in Fig. 5,
9s and % are not equal at all. In our cas®; is more generali., human detection
is more general than pedestrian detection) because mae ¢fgcenarios are faced
(Psis urban like).
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Therefore, our problem reduces to obtain some labelled leanfipm %, in a
cheap way. For that, our proposal consists in an extensigheddctive learning
procedure proposed in [25, 24] usindnaman oracleo labeldifficult samplesand
to confirmeasy sampleas right classified. All these samples are coming frgm
Usually, the difficult samples are defined as those fallindp@éambiguity region of
the base classifier at harics., the area close to the decision boundary. However, in
these casess and Z; follow the same distribution and the aim is to label as few
samples as possible but being meaningful. Our case, howiewdifferent. Let us
say thatés has been learnt frovs and thatk € % Ax € wi. If G5(%) is a negative
value, large in magnitude, it turns out that from the viewpaif 7, x; is far from
being inw, from imaging a human in our case. In our domain adaptatiopgsal,
we do not consider such as an outlier. On the contrary, these are the informative
samples for adapting the domains,, the samples that must label the human oracle.
As an extension we also include easy samples that are thesdalting out of the
ambiguity region.

Accordingly, a given collection of real-world images it isopessed usin@s
to detect pedestrians. Detections are kept. By detecti@nsomsider those image
windows x; for which |%€s(x)| > th. For our real AdaBoost%s(%)| > 1. Then,
it is started a working session in which such images and tletecare presented
to the human oracle. The responsibility of the oracle is tp i@ given image
contains no humangés/nequestion), to label missed humans with a rectangular
bounding box (Fig. 6) and confirm the correct detections.edhe whole sequence
is processed by the oracle, a new classifier is trained usatabelled samples that
where used to buil&s (virtual-world ones) as well as the new collected difficult
samples (real-world ones). We calbol worlc? to the joint space of virtual- and
real-world samples. This type of active learning is termgfatch modebecause
a set of images is processed before re-training. The owagrphoach is summarized
in Fig. 2. We think that a noticeable fact is to use virtuald a@al-world samples to
train a human classifier. This kind of process can be iterated

4 Experimental results

Plots of Fig. 5 show the effect of the dataset shift on thequarance. To solve
this problem we employed the semi-supervised domain atiaptechnique pro-
posed in section 3. Fig. 7 and 8 show these experiments ie tfifeerent plots:

one for Haar, other for EOH and the last one for HaarEOH. Thesglompare the
performance of the passive trained classifiers shown ing-igith the active ones
explained in section 3. Four experiments are tested foligwhe active learning
procedure. Each experiment relies on a different manneoltgating the samples.
As a reference we show two baselines that differ in the dagd testrain their clas-
sifiers:INRIA 10%one uses a 10% of the INRIA training dataset andRaedone

2 \\e use theool worldterm as a tribute to the 1992 movie with that title. In this mothere is a
real world and a cool world, the latter shared by real humansartdons.
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Fig. 7 Semi-supervised domain adaptation experimental results



Interactive training of human detectors 13

INRIA, HaarEOH, AdaBoost, DA

701
60
50

N
o

w
o

miss rate (%)

N
o

| ——INRIA (21.54)
= = =INRIA10 (35.41)
= Virtual (37.59)
= = =Virtual ORG Rand10 (26.16)
=—4— Virtual ORG Act+10 (23.08)
=& Virtual ORG Act-10 (27.73)
=@— Virtual ORG Act+10 (20.38)

Il Il Il

0.2 0.4 0.6 0.8 1
FPPI

10

Fig. 8 Semi-supervised domain adaptation experimental results

uses the virtual-world training set plus a 10% of the INRIAining datasetAct
refers to the active learning experiments explained in@e@&. They differ on the
oracle annotation procedure. Att+ the oracle labels the difficult samples., the
not detected humans, by framing them with a bounding bo#clrthe oracle anno-
tates the easy samplé,., the correctly detected humans, by just eliminating false
positives. Note thaAct- requires much less annotation effort. Accordinglgt+
refers to the combined annotation effortAxt+ andAct-.

From the experiments we can draw the following observations

e Reducing the training data of INRIA to the 10% decreases émopmance of
any trained detector by more than 10 points of AMR.

e All detectors benefit from adding a 10% of random INRIA dataht® virtual-
world set. This benefit varies from 6 to 10 points of perforo®n

e Almost all of the tested\ct experiments outperform thHieandandINRIA 10%
baselines. Note that the trivial procedure of adding randata performs really
good in other contexts and it is usually difficult to outpenfio Our proposed
active learning procedures clearly outperform the randog o

e For Haar and EOHA\ct+ andAct- perform equally but requiringct- less anno-
tation effort. However, for HaarEOWKct+ performs better.

¢ In all the casedé\ctt- outperforms the baselines and the othet experiments,
even slightly outperforming the INRIA trained pedestriaatattor for the most
important case, the HaarEOH.
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5 Conclusion

In this chapter we have addressed a core problem in the fidldrofn detection,
namely, the acquisition at low cost of good samples to tiainrder to collect most
of the human and background samples we rely on playersfdrofea videogame,
i.e, we automatically collect labelled samples while enjoyigngame. With them
we learn a virtual-world based pedestrian classifier thattmwork as a human clas-
sifier in images depicting the real world. In INRIA images thrtual-world trained
pedestrian classifier cannot reach the performance of aifitadearnt using data
manually labelled for training in such dataset. In order ¢efk the advantage of
the cost-free labelling in virtual-worlds, we have cast pheblem of transforming
the virtual-world based pedestrian classifier into a humassdier for real-world
images of general scenarios as a domain adaptation probteperform the adap-
tation, we have used a batch active learning techniquewlitatjust a few manually
labelled humans from the real-world images, is able to rélaelsame performance
than a human classifier entirely trained from a much largeusrnof manually la-
belled data. Ultimately, our human classifier has beendrhiny using HaarEOH
features that can be computed fast using integral imagesbaérve that, in a way,
we have adopted a multimodal approach from two view poidfsuging two differ-
ent types of raw data (virtual and real), and (2) collectimg data by playing in the
one hand and by working on the other. Besides, user interaidikey as we need
a human oracle to annotate real-world samples. Finally, weldvlike to mention
that our proposal can be extended in the future in severas eay, detecting other
targets and incorporating spatio-temporal features.
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