|   | 
Details
   web
Records Links
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell; Ramon Baldrich edit  url
openurl 
Title Psychophysical measurements to model inter-colour regions of colour-naming space Type Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
Volume 53 Issue 3 Pages (down) 031106 (8 pages)  
Keywords image processing; Analysis  
Abstract JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ PBV2009 Serial 1157  
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell; Ramon Baldrich edit  doi
openurl 
Title Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset Type Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal  
Volume 53 Issue 3 Pages (down) 031105–9  
Keywords  
Abstract The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ VPV2009a Serial 1171  
Permanent link to this record
 

 
Author Susana Alvarez; Maria Vanrell edit   pdf
url  doi
openurl 
Title Texton theory revisited: a bag-of-words approach to combine textons Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
Volume 45 Issue 12 Pages (down) 4312-4325  
Keywords  
Abstract The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0031-3203 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ AlV2012a Serial 2130  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
Title Color Attributes for Object Detection Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages (down) 3306-3313  
Keywords pedestrian detection  
Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
Address Providence; Rhode Island; USA;  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes ADAS; CIC; Approved no  
Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author Naila Murray; Maria Vanrell; Xavier Otazu; C. Alejandro Parraga edit   pdf
doi  openurl
Title Low-level SpatioChromatic Grouping for Saliency Estimation Type Journal Article
Year 2013 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
Volume 35 Issue 11 Pages (down) 2810-2816  
Keywords  
Abstract We propose a saliency model termed SIM (saliency by induction mechanisms), which is based on a low-level spatiochromatic model that has successfully predicted chromatic induction phenomena. In so doing, we hypothesize that the low-level visual mechanisms that enhance or suppress image detail are also responsible for making some image regions more salient. Moreover, SIM adds geometrical grouplets to enhance complex low-level features such as corners, and suppress relatively simpler features such as edges. Since our model has been fitted on psychophysical chromatic induction data, it is largely nonparametric. SIM outperforms state-of-the-art methods in predicting eye fixations on two datasets and using two metrics.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0162-8828 ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.051; 600.052; 605.203 Approved no  
Call Number Admin @ si @ MVO2013 Serial 2289  
Permanent link to this record
 

 
Author Robert Benavente; Maria Vanrell; Ramon Baldrich edit  openurl
Title Parametric Fuzzy Sets for Automatic Color Naming Type Journal
Year 2008 Publication Journal of the Optical Society of America A Abbreviated Journal  
Volume 25 Issue 10 Pages (down) 2582–2593  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ BVB2008 Serial 1004  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
Volume 21 Issue 4 Pages (down) 1997-2007  
Keywords  
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1057-7149 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell; Dimitris Samaras edit   pdf
doi  openurl
Title The Photometry of Intrinsic Images Type Conference Article
Year 2014 Publication 27th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages (down) 1494-1501  
Keywords  
Abstract Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.  
Address Columbus; Ohio; USA; June 2014  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference CVPR  
Notes CIC; 600.052; 600.051; 600.074 Approved no  
Call Number Admin @ si @ SPB2014 Serial 2506  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 29 Issue 7 Pages (down) 1199-1210  
Keywords  
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1084-7529 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit  url
doi  isbn
openurl 
Title Top-Down Color Attention for Object Recognition Type Conference Article
Year 2009 Publication 12th International Conference on Computer Vision Abbreviated Journal  
Volume Issue Pages (down) 979 - 986  
Keywords  
Abstract Generally the bag-of-words based image representation follows a bottom-up paradigm. The subsequent stages of the process: feature detection, feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, combining multiple cues such as shape and color often provides below-expected results. This paper presents a novel method for recognizing object categories when using multiple cues by separating the shape and color cue. Color is used to guide attention by means of a top-down category-specific attention map. The color attention map is then further deployed to modulate the shape features by taking more features from regions within an image that are likely to contain an object instance. This procedure leads to a category-specific image histogram representation for each category. Furthermore, we argue that the method combines the advantages of both early and late fusion. We compare our approach with existing methods that combine color and shape cues on three data sets containing varied importance of both cues, namely, Soccer ( color predominance), Flower (color and shape parity), and PASCAL VOC Challenge 2007 (shape predominance). The experiments clearly demonstrate that in all three data sets our proposed framework significantly outperforms the state-of-the-art methods for combining color and shape information.  
Address Kyoto, Japan  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1550-5499 ISBN 978-1-4244-4420-5 Medium  
Area Expedition Conference ICCV  
Notes CIC Approved no  
Call Number CAT @ cat @ SWV2009 Serial 1196  
Permanent link to this record
 

 
Author Eduard Vazquez; Ramon Baldrich; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
Title Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights and Textures Type Journal Article
Year 2011 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
Volume 33 Issue 5 Pages (down) 917-930  
Keywords  
Abstract The segmentation of a single material reflectance is a challenging problem due to the considerable variation in image measurements caused by the geometry of the object, shadows, and specularities. The combination of these effects has been modeled by the dichromatic reflection model. However, the application of the model to real-world images is limited due to unknown acquisition parameters and compression artifacts. In this paper, we present a robust model for the shape of a single material reflectance in histogram space. The method is based on a multilocal creaseness analysis of the histogram which results in a set of ridges representing the material reflectances. The segmentation method derived from these ridges is robust to both shadow, shading and specularities, and texture in real-world images. We further complete the method by incorporating prior knowledge from image statistics, and incorporate spatial coherence by using multiscale color contrast information. Results obtained show that our method clearly outperforms state-of-the-art segmentation methods on a widely used segmentation benchmark, having as a main characteristic its excellent performance in the presence of shadows and highlights at low computational cost.  
Address Los Alamitos; CA; USA;  
Corporate Author Thesis  
Publisher IEEE Computer Society Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0162-8828 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VBW2011 Serial 1715  
Permanent link to this record
 

 
Author Maria Vanrell; Felipe Lumbreras; A. Pujol; Ramon Baldrich; Josep Llados; Juan J. Villanueva edit  openurl
Title Colour Normalisation Based on Background Information. Type Miscellaneous
Year 2001 Publication Proceeding ICIP 2001, IEEE International Conference on Image Processing Abbreviated Journal ICIP 2001  
Volume Issue 1 Pages (down) 874–877  
Keywords  
Abstract  
Address Grecia.  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes ADAS;DAG;CIC Approved no  
Call Number ADAS @ adas @ VLP2001 Serial 167  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit  doi
isbn  openurl
Title Perceptual color texture codebooks for retrieving in highly diverse texture datasets Type Conference Article
Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
Volume Issue Pages (down) 866–869  
Keywords  
Abstract Color and texture are visual cues of different nature, their integration in a useful visual descriptor is not an obvious step. One way to combine both features is to compute texture descriptors independently on each color channel. A second way is integrate the features at a descriptor level, in this case arises the problem of normalizing both cues. A significant progress in the last years in object recognition has provided the bag-of-words framework that again deals with the problem of feature combination through the definition of vocabularies of visual words. Inspired in this framework, here we present perceptual textons that will allow to fuse color and texture at the level of p-blobs, which is our feature detection step. Feature representation is based on two uniform spaces representing the attributes of the p-blobs. The low-dimensionality of these text on spaces will allow to bypass the usual problems of previous approaches. Firstly, no need for normalization between cues; and secondly, vocabularies are directly obtained from the perceptual properties of text on spaces without any learning step. Our proposal improve current state-of-art of color-texture descriptors in an image retrieval experiment over a highly diverse texture dataset from Corel.  
Address Istanbul (Turkey)  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
Area Expedition Conference ICPR  
Notes CIC Approved no  
Call Number CAT @ cat @ ASV2010b Serial 1426  
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez edit  url
openurl 
Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 34 Issue 5 Pages (down) 827-837  
Keywords  
Abstract Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.087 Approved no  
Call Number Admin @ si @ RVB2017 Serial 2892  
Permanent link to this record