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Abstract—We propose a saliency model termed SIM (saliency by induction

mechanisms), which is based on a low-level spatiochromatic model that has

successfully predicted chromatic induction phenomena. In so doing, we

hypothesize that the low-level visual mechanisms that enhance or suppress image

detail are also responsible for making some image regions more salient.

Moreover, SIM adds geometrical grouplets to enhance complex low-level features

such as corners, and suppress relatively simpler features such as edges. Since

our model has been fitted on psychophysical chromatic induction data, it is largely

nonparametric. SIM outperforms state-of-the-art methods in predicting eye

fixations on two datasets and using two metrics.

Index Terms—Computational models of vision, color, hierarchical image

representation

Ç

1 INTRODUCTION

THE ability to predict the attentional gaze of observers viewing a
scene has wide applications, from object recognition and visual
aesthetics to marketing and user interface development. As a
result, a great deal of research effort has been devoted to
developing models of human visual attention. Visual attention is
thought to comprise bottom-up and top-down components. This
paper focuses on bottom-up attention or saliency, which relates to
cues such as local contrast, color, and motion.

There is a wide spectrum of methods for modeling saliency [1],

from biologically inspired models to learning-based approaches.

Among the more bioinspired models, Itti et al.’s [2] is one of the

most influential. It uses a neural network to output a saliency map

after training the network with center-surround excitation re-

sponses of feature maps obtained after a single layer of linear

filters is applied to the input image. Each feature map contains

information from one of three cues: orientation, color, or scale. Gao

et al. [3] considered the saliency of a local region to be quantified

by the discriminatory power of a set of features describing that

region to distinguish the region from its surrounding context.

Bruce and Tsotsos [4] approached local saliency as the self-

information of local patches with respect to its surrounding

patches, where the surround could be considered a localized

surround region or the remainder of the entire image. In [4], an

ICA basis set of filters was learned from RGB patches extracted

from images and used to represent the local patches. As was also

found by Hou and Zhang [5] in a similar approach, the basis set

consisted mainly of oriented Gabor-like patches with opponent

color properties. Zhang et al. [6] also proposed a method that uses

self-information, but in this case a spatial pyramid was used to

produce local features and a database of natural images, rather

than a local neighborhood of pixels or a single image, provided

contextual statistics. In addition, Zhang et al. extracted features

from a spatial pyramid of each of the three opponent color

channels. Seo and Milanfar [7] used kernel regression-based self-

resemblance to compute saliency and considered a region to be

salient when its curvature was different from that of its surround.
In these bioinspired approaches, there remain several major

challenges, including:

. generating the optimal feature maps for estimating
saliency [8],

. holistically combining saliency information from these
feature maps, which are extracted from multiple scales,
orientations and color channels [9], and

. selecting the many model parameters (such as the number,
type, and orientation of filters, and coefficients for non-
linear normalizations and activation functions) present in
such models [10].

In this work, we propose a saliency model that addresses the

above issues by making two main contributions:

. We adapt a low-level color induction model in order to
predict saliency. The resultant saliency model inherits an
extended contrast sensitivity function (ECSF), which
provides a biologically inspired manner of integrating
scale, orientation, and color. The ECSF has been fitted to
psychophysical data and, as a result, requires no parameter
tuning. As such, it may be considered as prior knowledge
included in saliency by induction mechanisms (SIM).

. We use “geometrical grouplets” [11] to produce a sparse
and efficiently computed image representation that en-
hances features known to guide attention and suppresses
nonsalient features.

The proposed model exceeds the performance of state-of-the-art

saliency estimation methods in predicting eye fixations for two

datasets and using two metrics.
The remainder of this paper is organized as follows: In

Section 2, we describe the color induction principles that underlie

our saliency model. In Section 3, we describe our sparse image

representation based on geometrical grouplets. Our entire saliency

estimation framework is detailed in Section 4. In Section 5, we

discuss quantitative and qualitative experimental results, and we

draw several conclusions in Section 6. A preliminary version of

this work appeared in [12].

2 MODELING LOW-LEVEL COLOR VISION

Two decades ago, a modular paradigm arose in biological vision

stating that color perception occurs in the visual system in a

specific cortical area, V4 [13]. This modular paradigm was adopted

by Itti et al. for saliency [2]. In the intervening years, however, a

large body of evidence has emerged that supports the view of a

more interlinked processing of color and form in the human visual

cortex [14].
In this work, we adapt a computational model of color

perception [15] to the problem of saliency estimation. The model

is based on a nonmodular approach to combining color, scale, and

orientation and has been designed to predict well-known color

induction phenomena. Color induction refers to perceived changes

in the color appearance of a stimulus due to surround influence

and may be demonstrated using common visual illusions. Our

adaptation of the color perception model of Otazu et al. [15] is

motivated by our hypothesis that factors related to color induction

phenomena also inform on local saliency.
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The model of Otazu et al. [15] captures the effect of three key
properties on the perceived color of stimuli. In the following
paragraphs, we describe these effects and how they have been
incorporated into our saliency model.

First, the perceived color of a stimulus is influenced by the
surround spatial frequency. Fig. 1a shows how surround spatial
frequency affects the perceived colors of four identical stimuli. In a
high-frequency background, the color of the stimulus approaches
that of the surround (top-left stimulus becomes more greenish,
while the bottom-left stimulus becomes yellowish). In a low-
frequency background, the stimulus’s perceived color moves away
from the surround color (top-right stimulus becomes more yellow-
ish when surrounded by green; bottom-right stimulus more
greenish when surrounded by yellow). These induction effects
are termed assimilation and contrast, respectively.

Second, orientation also influences color appearance. In Fig. 1b,
we can observe that the relative orientation between the stimulus
and the surround provokes a perceptual change. While the top-left
and top-right stimuli clearly undergo assimilation (a greenish
perception when surrounded by pink and a bluish perception
when surrounded by blue), the stimuli at the bottom appear closer
to their true cyan color. This is because assimilation is greatest
when the stimulus and background have the same orientation.

These two effects are incorporated into our saliency model by
representing images using a wavelet decomposition which jointly
encodes the spatial frequency and orientation of image stimuli.
Given an image I, the wavelet decomposition of one of its
channels Ic is

WT ðIcÞ ¼ fws;og1�s�S;o¼fh;v;dg; ð1Þ

where ws;o is the wavelet plane at spatial scale s and orientation o.
For an image whose largest dimension is size D, the decomposition
produces S ¼ log2D scales. The wavelet transform WT uses Gabor-
like basis functions, as Gabor functions resemble the receptive
fields of neurons in the cortex. Note that we cannot use an exact
Gabor transform as it does not have a complete inverse transform,
a property which will be required in a later stage of our method.

Third, surround contrast also plays a crucial role in how color is
perceived. As shown in Fig. 1c, chromatic assimilation is reduced
and chromatic contrast is increased when the surround contrast
decreases. Therefore, the amount of induction at an image location
is modulated by the surround contrast at that location. The
surround contrast of a stimulus at position x; y can be modeled as a
divisive normalization, which we term the normalized center
contrast (NCC), zx;y, around a wavelet coefficient wx;y. It is
estimated as a normalization of the variance of the coefficients of
the central region acenx;y normalized by the variance of the
coefficients of the surround region asurx;y :

zx;y ¼
�
acenx;y

�2

�
acenx;y

�2 þ
�
asurx;y

�2
: ð2Þ

Divisive normalization has been shown by Simoncelli and
Schwartz [16] to remove statistical dependences present in wavelet
decompositions of natural scenes and, in this instance, may be
viewed as a center-surround contrast mechanism.

The three effects mentioned above are integrated using an
ECSF. The ECSF determines the type of induction depending on
the orientation at a specific spatial frequency, and the amount of
induction depending on the surround contrast. This function is
inspired by the well-known CSF that was measured in [17] for
luminance and color contrast.

The ECSF we use is a function of spatial scale s and NCC z.
Spatial scale is inversely proportional to spatial frequency � such
that s ¼ log2ð1=�Þ ¼ log2ðT Þ, where T is the period and thus
denotes one frequency cycle measured in pixels. The ECSF
function is defined as ECSF ðz; sÞ ¼ z � gðsÞ þ kðsÞ. Here, z is
modulating the function gðsÞ, which is an approximation to the
psychophysical CSF and is itself introducing assimilation or
contrast depending on the spatial frequency s. Function gðsÞ is
defined as

gðsÞ ¼ �e
�
ðs�sg

0
Þ2

2�2
1 ; s � sg0;

�e
�
ðs�sg

0
Þ2

2�2
2 ; otherwise:

8><
>:

ð3Þ

Here, � is a scaling constant, and �1 and �2 define the spread of the
spatial sensitivity of gðsÞ. The sg0 parameter defines the peak scale
sensitivity of gðsÞ. An additional function, kðsÞ, was introduced to
ensure a nonzero lower bound on ECSF ðz; sÞ:

kðsÞ ¼ e
�
ðs�sk

0
Þ2

2�2
3 ; s � sk0;

1; otherwise:

8<
: ð4Þ

Here, �3 defines the spread of the spatial sensitivity of kðsÞ and
sk0 defines the peak scale sensitivity of kðsÞ.

In the induction model of Otazu et al. [15], the output of the
ECSF was used to weight wavelet coefficients, after which an
inverse wavelet transform was performed, producing a new
“perceived” image. This reconstructed image replicates color
induction phenomena perceived by human observers. For our
saliency model, we use these induction weights output by the ECSF
as a measure of the saliency of a feature given its orientation, spatial
frequency, and center-surround contrast properties.

We have fitted all the parameters of the ECSF in order to predict
psychophysical data from two experiments, one involving bright-
ness and the other involving color induction. In the first
experiment, by Blakeslee and McCourt [18], observers viewed
two stimuli with the same luminance but different perceived
brightness. They were then asked to modify the brightness of one
of the stimuli to match the perceived brightness of the other
stimulus. The second experiment was conducted by Otazu et al.
[15] in an analogous fashion, but with observers performing
asymmetric color and brightness matching tasks rather than tasks
involving only brightness. In these matching experiments, the
difference between the original physical (color or brightness)
values of the stimulus and the modified physical values was
recorded as a measure of induction. Least squares regression was
used to select the parameters of the functions that best reproduce
these data (given in Table 1) in the perceived image output by the
induction model. Examples of stimuli used in these experiments
are shown in Fig. 2.

As the human visual system has different contrast sensitivities
for color and luminance, two different ECSF functions were fitted
using these data: one for intensity channels (ECSFI ) and another
for chromatic channels (ECSFC). Both fitted ECSF ðz; sÞ functions
maintained a high correlation rate (r ¼ 0:9) with the color and
brightness psychophysical data (see Fig. 2). Their profiles are
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Fig. 1. Perceived color of the stimulus depends on (a) the color and frequency of
the surround, (b) relative orientation of the stimuli to the surround, and (c) self-
contrast of the surround.



shown in Fig. 3. The functions enhance NCC in a narrow passband

and suppress this contrast for low spatial scales. The magnitude of

the enhancement increases with the magnitude of the NCC, z, as

observed in Figs. 3a and 3b. These ECSFs have peak spatial scales

in the wavelet decomposition that correspond to peak spatial

frequencies between 2 and 5 cpd, which agree with previous

psychophysical estimations [17].
As stated above, we use a wavelet transform with Gabor-like

basis functions as an image representation. This representation

agrees with a long-standing view of the early human sensory

system as an efficient information processing system [19], [20]. In

this view, an objective of early sensory coding is to transform the

visual signal into a sparse, statistically independent representation

where redundancy has been removed. Wavelet decompositions are

highly sensitive to edges, in addition to more complex features

resulting from superimposed orientations, such as corners and

terminations. However, in comparison with edges, complex

features are preferentially fixated on when humans free-view

natural images, [21], [22]. Therefore, to estimate saliency, an image

representation with higher responses for complex features, relative

to the responses for simple features, is desirable. To construct such

an improved image representation, we will employ the Grouplet

Transform (GT).

3 GT FOR IMAGE REPRESENTATION

The GT [11] is an additional stage of the image representation that

renders it more responsive to complex features. The GT is applied

to each wavelet plane ws;o using a modified Haar transform (HT),

computed using a lifting scheme.

3.1 The GT as a Modified HT

The HT decomposes a signal into a residual (lower frequency)

component and a detail (higher frequency) component. When the

signal is a wavelet plane ws;o, its residual data rs;j;o are initialized as

rs;1;o ¼ ws;o. The grouplet scale j increases from 1 to J , where J is

the number of scales. For a horizontal wavelet support, the HT

groups consecutive residual coefficients rs;j;oð2x� 1; yÞ and

rs;j;oð2x; yÞ at scale j to compute the residual at the subsequent
scale jþ 1:

rs;jþ1;oðx; yÞ ¼
rs;j;oð2x� 1; yÞ þ rs;j;oð2x; yÞ

2
: ð5Þ

The detail data are computed as a normalized difference of the
consecutive residual coefficients:

ds;jþ1;oðx; yÞ ¼
rs;j;oð2x; yÞ � rs;j;oð2x� 1; yÞ

2j
: ð6Þ

A GT is an HT in which the residual and detail coefficients
are computed between pairs of elements that are not necessarily
consecutive, but are paired along the contour to which they both
belong. To ascertain the contour along which coefficients should
be paired, an “association field” is defined using a block-
matching algorithm. In this field, associations occur between
points and their neighbors in the direction of maximum
regularity. In this way, the association field encodes the
anisotropic regularities present in the image. The regularities in
rs;j;o are suppressed in ds;jþ1;o by (6). Therefore, the GT is in
essence a differencing operator applied to neighboring wavelet
responses along a contour. Neighbors with similar values
produce low responses in ds;jþ1;o, while those with differing
values or singularities produce high responses, as illustrated in
Fig. 4. By computing ds;j;o 8j ¼ 1; . . . ; J , points are grouped
across increasingly long distances. Each resultant grouplet plane
is a sparser representation that contains comparatively higher
coefficients for complex geometrical features, while simple
features are suppressed.

In our saliency model, we apply the GT to wavelet coefficients
in order to obtain this improved representation in which salient
features are more prominent. It has been suggested that the
hierarchical application of the GT to wavelet coefficients may
mimic long-range horizontal connections between simple cells in
area V1 [11].
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Fig. 2. (a) Examples of experimental stimuli. (b) Correlation between model
prediction and psychophysical data. The solid line represents the model linear
regression fit and the dashed line represents the ideal fit, i.e., perfect correlation.
Since measurements involve dimensionless measures and physical units, they
were arbitrarily normalized to show the correlation.

TABLE 1
Fitted Parameters for ECSF ðz; sÞ Functions

Fig. 3. Weighting functions for (a) intensity and (b) chromaticity channels:
Bluer colors represent lower ECSF values, while redder colors indicate higher
ECSF values. (c) Slices of both ECSF ðz; sÞ functions for z ¼ 0:9. For a
wavelet coefficient corresponding to a scale between approximately 3 and 6, z
is boosted. Coefficients outside this passband are either suppressed (for low
spatial scales) or remain unchanged (for high spatial scales).

Fig. 4. Grouping-associated wavelet coefficients. (a) The input image. (b) The
association field at j ¼ 1 over a vertically orientated wavelet plane (dark
coefficients in the wavelet plane are negative, bright coefficients are positive,
and gray coefficients are close to zero). The association field (arrows) groups
coefficients. The resultant grouplet detail plane in (c) is more sparse than the
wavelet plane, preserving only the variations occurring at the corners and
terminations. (d) The final saliency map (see Section 4).



4 SALIENCY ESTIMATION

In previous sections, we made two hypotheses on what

constitutes a salient visual stimulus. First, we claimed that a

region is salient if its color is enhanced by the surround. We have

shown that enhancement can depend on frequency, orientation,

and contrast of the surround. We proposed adapting a color

induction model based on wavelets to indicate color contrast

regions. Second, we claimed that complex image features such as

corners, terminations, or crossings emerging from contours are

salient. We proposed that a GT be used to enhance these complex

features in the image representation.
Considering both hypotheses, here we propose a six-stage

model that estimates saliency by enhancing image locations with

certain local spatiochromatic properties and/or contour singula-

rities. Our model contains the main stages of a color induction

model [15] which uses a wavelet decomposition and a function

that modulates wavelet coefficients according to their local

properties. We introduce a GT that enables the grouping of simple

features while maintaining singularities. Below, we describe the

stages of our saliency model.
Stage (I): Color representation. Three opponent color channels are

obtained from image I by converting each ðRGBÞ value, after �

correction, to the opponent space so thatO1 ¼ R�G
RþGþB ,O2 ¼ RþG�2B

RþGþB ,

and O3 ¼ RþGþB.
Stage (II): Spatial decomposition. Each channel is decomposed into

two successive steps. The first one uses the wavelet transform in

(1), obtaining fws;og. Subsequently, on each wavelet plane, the GT

in (6) is applied:

Ic �!
WT f!s;og �!

GT fds;j;og; ð7Þ

where ds;j;o denotes the detail plane at scale j. For a wavelet plane

whose largest dimension is size D, J ¼ log2D. To group features,

the association field for a wavelet plane is initialized perpendicu-

larly to its orientation o. Thus, for a horizontal wavelet plane, the

Haar differencing in (6) is conducted column-wise. A diagonal

wavelet plane captures high-frequency information in both

horizontal and vertical orientations. Therefore, the GT is applied

to such planes in both horizontal and vertical orientations

separately, leading to two sets of grouplet planes for each diagonal

wavelet plane.
Stage (III): NCC. We compute the NCC, zs;j;oðx; yÞ, for every

grouplet coefficient ds;j;oðx; yÞ using (2).
Stage (IV): Induction weights (ECSF). The ECSF function is used

to compute induction weights �s;j;oðx; yÞ for every grouplet

coefficient ds;j;oðx; yÞ:

�s;j;oðx; yÞ ¼ ECSF ðzs;j;oðx; yÞ; sÞ: ð8Þ

The ECSFC function is used for channels O1 and O2, while ECSFI
is used for channel O3. The �s;j;oðx; yÞ weight gives a measure of

saliency for location ðx; yÞ in ds;j;o. The ECSF acts so that zs;j;o values

with scales s in the passband of the ECSF are enhanced, while

those with scales outside of this passband are suppressed.
Each �s;j;o plane is resized to the size of its corresponding

wavelet plane ws;o using bicubic interpolation, and then summed

to produce �s;o for that wavelet plane:

�s;oðx; yÞ ¼
X
j

’ð�s;j;oðx; yÞÞ; ð9Þ

where ’ð�Þ denotes bicubic interpolation.

Stages (V)-(VI): Saliency map recovery. Finally, an inverse wavelet
transform is performed on the spatial pyramid of �s;o planes to

produce the final saliency map Sc for an image channel. At this

point, the pipeline of the model may be summarized as

Ic �!
WT f!s;og �!

GT fds;j;og �!
NCC fzs;j;og

�!ECSF f�s;j;og �!
’ f�s;og �!

WT�1

Sc:

The saliency maps for all three image channels are combined to

form the final saliency map S using the euclidean norm

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
O1 þ S2

O2 þ S2
O3

q
. The method, termed SIM, is summarized

schematically in Fig. 5.

4.1 Designing the Center and Surround Regions

In stage III of the method, NCC is measured. The number of pixels

spanning the center region and the extended region, comprising

both the center and surround regions, was chosen so as to resemble

the receptive and extra-receptive fields of V1 cortical cells,

respectively, in a similar fashion to Gao et al. [3]. Various studies

[23], [24] estimate the central region of the receptive field in V1

cells to correspond on average to a visual angle, �, of approxi-

mately 1�. The size of a feature, l, that subtends this visual angle

when shown on a screen is computed as l ¼ d � tan�, where d is the

distance from the observer to the screen. Therefore, the number of

pixels Pc that correspond to feature l is Pc ¼ ðd � tan�Þ=ðmonres Þ, where

mon is the size of the monitor and res is the average of the

horizontal and vertical resolution of the displayed image. We used

this Pc value as the diameter of the central region. The diameter of

the extra-receptive field, Pe�r, has been estimated to be at least two

to five times that of the receptive field [25], [26]. We experimented

with diameters in this range and found a size of 5.5 times that of

the central region to perform well. These diameters were held
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Fig. 5. Schematic of SIM. (I) The image is converted to the opponent space. (II) Each channel is decomposed into wavelet planes, and each wavelet plane is
decomposed into grouplet planes (demarcated with black lines). (III) Contrast responses from grouplet planes are calculated and combined to produce contrast
response planes. (IV) The ECSF produces induction weights planes �s;o. (V) The �s;o planes are combined by an inverse wavelet transform to produce the final
channel map. (VI) The three-channel maps are then combined.



constant throughout the image decomposition so that the effective
sizes increase with the spatial scale.

5 EXPERIMENTS

To evaluate SIM, we applied it to the problem of predicting eye
fixations in two image datasets. The accuracy of the predictions
was quantitatively assessed using both the Kullback-Leibler (KL)
divergence and the receiver operating characteristic (ROC) metrics.
The KL divergence measures how well the method distinguishes
between the histograms of saliency values at fixated and
nonfixated locations in the image. The ROC curve measures how
well the saliency map discriminates between fixated and non-
fixated locations for different binary saliency thresholds. For both
metrics, a higher value indicates better performance.

As noted by Zhang et al., image border effects in several
saliency methods result in artificial improvements in the
ROC measure [6]. Therefore, we adopt the evaluation framework
described in [6] in order to avoid this issue and ensure a fair
comparison of methods. This evaluation framework comprises
modified metrics for the area under the ROC curve (AROC) and
KL divergence metrics. For each image in the dataset, fixations for
that image are denoted true positives, while the fixations for a
randomly chosen different image in the dataset are denoted false
positives for that image. With this formulation, any center bias of
the true positive fixations with respect to the false positive
fixations is avoided. The random selection of false positive
fixations means that a new calculation of the metrics is likely to
produce a different value. Therefore, in order to compute the
standard error (SE), both metrics were computed 100 times, each
time using a different random permutation of the fixation points as
false positives. The KL divergence between the histograms of
saliency values at true-positive fixation points and false-positive
fixation points was computed.

The first eye-fixation dataset used [4] is a popular benchmark
dataset for comparing eye-fixation predictions between saliency
models. It contains 120 color images, with 511� 681 resolution, of
indoor and outdoor scenes, along with the recorded eye fixations
of 20 subjects, to whom the images were presented for 4 seconds.
The evaluation was performed on seven state-of-the-art methods
as well as SIM. The results are reported in Table 2. We see that,
even without the GT, SIM exceeds the state-of-the-art performance
as measured by both metrics. Further, the addition of the GT
improves upon SIM’s performance.

The second eye-fixation dataset used was provided by Judd
et al. [29]. This dataset contains 1,003 color images of varying
dimensions, along with the recorded eye fixations of 15 subjects, to
whom the images were presented for 3 seconds. Because fixations
must be compared across images, only those images whose
dimensions were 768� 1;024 pixels were used, reducing the

number of images examined to 463. The images in this dataset
contain a greater number of semantic objects which are not
modeled by bottom-up saliency, such as people, faces, and text,
and as such is more challenging than the first. Therefore, the AROC
and KL divergence metrics are lower for all the saliency models, as
one would expect. The results shown in Table 3 indicate that once
again SIM exceeds state-of-the-art performance.

Implementation details. The Bruce and Tsotsos dataset was

collected on a 21-inch monitor with d ¼ 29:5 inches. For images

with 511� 681 resolution, the diameter of the central region, Pc,

¼ 18 pixels. The Judd et al. dataset was collected on a 19 inch

monitor with d ¼ 24 inches. For images with 768� 1;024 resolu-

tion, Pc ¼ 24 pixels. For a MATLAB implementation running on an

Intel Core 2 Duo CPU at 3.00 GHz with 2 GB RAM, typical run

times for color images of sizes 128� 128, 256� 256, and 512� 512

pixels are 0.6, 1.2, and 3.2 seconds, respectively.

5.1 Discussion

Qualitative comparisons between two state-of-the-art methods [4],

[7] and SIM are displayed in Figs. 6 and 9. One can see that for the

proposed method (column (d)), the most salient regions corre-

spond better to eye fixations and highly salient features are located

at a variety of spatial frequencies.
In addition, the model is less sensitive to low-frequency edges

such as skylines and road curbs, while avoiding excessive
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TABLE 2
Performance on the Bruce and Tsotsos Dataset

TABLE 3
Performance on the Judd et al. Dataset

Fig. 6. Qualitative results for the Bruce and Tsotsos dataset. Column (a) contains
the original image. Columns (b), (c), and (d) contain saliency maps obtained from
[4], [7], and SIM, respectively. Yellow markers indicate eye fixations. Our method
is seen to more clearly distinguish salient regions from background regions and to
better estimate the extent of salient regions.



sensitivity to high-frequency textured regions. The weighting
function ECSF ðz; sÞ is critical to these effects as it is more
sensitive to mid-range frequencies, as shown in Fig. 3. As a result,
it acts as a bandpass filter in the image’s spatial frequency domain
and provides a biologically inspired mechanism for combining
spatial information at different scales. The importance of this
combination is evidenced by the fact that SIM’s performance
decreases significantly (though it is still state of the art) when the
ECSF is removed (see Tables 2 and 3, SIM w/o ECSF). The GT
further lowers sensitivity to low-frequency edges.

Scale selection and combination are required for all saliency
estimation methods and have proven challenging. Most state-of-
the-art methods (e.g., [7], [5], [28]) perform scale selection by
simply choosing an image resolution that gives best performance
as measured on eye-fixation data test sets. However, even when
using data from the test domain, the performances of these
methods are lower than SIM’s, which uses a scale combination
method fitted using experimental data from a different problem
domain, namely, color induction prediction. In addition, Seo and
Milanfar reported no improvement when combining saliency
maps computed at different scales [7]. Therefore, the inclusion of
an effective scale combination mechanism is one important way in
which our method differs from previous ones.

One can also see in the figures that regions of high saliency are
more clearly distinguished from background regions. Other
methods may provide good localization for salient regions at few
spatial scales [7] or may detect poorly localized regions at many
spatial scales [4]. Our method strikes a good balance between
localization of salient regions and detection of salient regions at
different spatial scales. This is reflected in the large improvements
in KL divergence achieved for both datasets. The increased
discriminative power is due to the fact that the background
features present in the wavelet planes are attenuated by the GT, as
illustrated in Fig. 7. These background features tend to be small,
isolated features which, while present in wavelet planes, do not
persist beyond the first few grouplet planes.

The GT itself may be considered a center-surround mechanism
as it measures the difference in amplitude between a coefficient
and its neighbor. Consequently, regions of the wavelet plane with
similar amplitudes, and therefore low contrast, are attenuated in
their grouplet planes, while regions of the wavelet plane with large
differentials between their amplitudes are enhanced. Therefore, the
GT acts to further distill the information present in the wavelet
transform, preserving only features that are spatially extensive and
strongly contrasting with their surroundings.

Our model required parameters to be set for the ECSF and the
center-surround regions. The ECSF parameters were set using
psychophysical data and are dataset independent. Therefore, our
only free parameters are the center-surround region sizes. As
mentioned in Section 4, the center region’s size was set to
correspond to 1� of visual angle, and the surround size was set
to be 5.5 times the size of the center region. However, when the
viewing conditions of the images are unknown, Pc and Pe�r cannot
be determined in this manner. In such a case, these values may be
fitted as hyperparameters of the model. We found that for Pc ¼ 17
and Pe�r ¼ 91, SIM maintains its performance for both metrics and
both datasets (see Tables 2 and 3, SIM with tuned Pc, Pe�r).
Moreover, the performance is quite stable for a wide range of

values of Pc and Pe�r (see Section 1 of the supplemental material,
which can be found in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.108, for
related experimental results). As such, our model is robust to
uncertainty in the choice of free parameters.

We also investigated the effect of varying the spatial scale for
which the ECSF ðz; sÞ gives the highest response, denoted by s0.
We varied s0 for the ECSF of the intensity channel, the channel
containing the majority of the saliency information. Fig. 8 shows
that SIM performs best when mid-range frequencies are
enhanced and low or high frequencies are inhibited. Further-
more, the best scale range for these metrics, between 4 and 6, is
consistent with the value determined using psychophysical data,
s0 ¼ 4:2 (see Fig. 3a).

6 CONCLUSIONS

We proposed a saliency model, SIM, based on a biologically
inspired low-level spatiochromatic representation. SIM measures
saliency using the result of the perceptual integration of color,
orientation, local spatial frequency, and surround contrast. The
parameters of our integration mechanisms have been fitted to
psychophysical data. In addition, we have shown that saliency
estimation is improved if we insert a grouping stage that
suppresses simple edges, thereby avoiding strong saliency
responses for such features. We demonstrate that SIM exceeds
state-of-the-art performance in predicting eye fixations on two
datasets and using two metrics. Its success raises an intriguing
question for further research, namely, whether the model designed
to predict color perception and adapted to saliency estimation can
be used to model other low-level visual tasks.
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Fig. 7. The GT attenuates spatially isolated features.

Fig. 8. Change in AROC and KL metrics with change in s0 for intensity ECSF ðz; sÞ,
for the Bruce and Tsotsos dataset, using SIM with GT. The best s0 for both these
metrics is in line with the value determined using psychophysical experiments.

Fig. 9. Qualitative results for the Judd et al. dataset. Column (a) contains the
original image. Columns (b), (c), and (d) contain saliency maps obtained from [4],
[7], and SIM, respectively. Yellow markers indicate eye fixations.
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