toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sergio Vera; Debora Gil; Agnes Borras; Marius George Linguraru; Miguel Angel Gonzalez Ballester edit   pdf
url  doi
openurl 
  Title (up) Geometric Steerable Medial Maps Type Journal Article
  Year 2013 Publication Machine Vision and Applications Abbreviated Journal MVA  
  Volume 24 Issue 6 Pages 1255-1266  
  Keywords Medial Representations ,Medial Manifolds Comparation , Surface , Reconstruction  
  Abstract In order to provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability for restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions.
This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoids degenerated medial axis segments. Second, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to syn- thetic shapes of known medial geometry. We also show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Mubarak Shah  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 605.203; 600.060; 600.044 Approved no  
  Call Number IAM @ iam @ VGB2013 Serial 2192  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title (up) Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author Josep Llados; Enric Marti edit  openurl
  Title (up) Graph-edit algorithms for hand-drawn graphical document recognition and their automatic introduction Type Journal Article
  Year 1999 Publication Machine Graphics & Vision journal, special issue on Graph transformation Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM Approved no  
  Call Number IAM @ iam @ LIM1999c Serial 1569  
Permanent link to this record
 

 
Author Enric Marti; Jordi Regincos;Jaime Lopez-Krahe; Juan J.Villanueva edit  url
doi  openurl
  Title (up) Hand line drawing interpretation as three-dimensional objects Type Journal Article
  Year 1993 Publication Signal Processing – Intelligent systems for signal and image understanding Abbreviated Journal  
  Volume 32 Issue 1-2 Pages 91-110  
  Keywords Line drawing interpretation; line labelling; scene analysis; man-machine interaction; CAD input; line extraction  
  Abstract In this paper we present a technique to interpret hand line drawings as objects in a three-dimensional space. The object domain considered is based on planar surfaces with straight edges, concretely, on ansextension of Origami world to hidden lines. The line drawing represents the object under orthographic projection and it is sensed using a scanner. Our method is structured in two modules: feature extraction and feature interpretation. In the first one, image processing techniques are applied under certain tolerance margins to detect lines and junctions on the hand line drawing. Feature interpretation module is founded on line labelling techniques using a labelled junction dictionary. A labelling algorithm is here proposed. It uses relaxation techniques to reduce the number of incompatible labels with the junction dictionary so that the convergence of solutions can be accelerated. We formulate some labelling hypotheses tending to eliminate elements in two sets of labelled interpretations. That is, those which are compatible with the dictionary but do not correspond to three-dimensional objects and those which represent objects not very probable to be specified by means of a line drawing. New entities arise on the line drawing as a result of the extension of Origami world. These are defined to enunciate the assumptions of our method as well as to clarify the algorithms proposed. This technique is framed in a project aimed to implement a system to create 3D objects to improve man-machine interaction in CAD systems.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier North-Holland, Inc. Place of Publication Amsterdam, The Netherlands, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1684 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ISE; Approved no  
  Call Number IAM @ iam @ MRL1993 Serial 1611  
Permanent link to this record
 

 
Author Ferran Poveda; Debora Gil; Enric Marti; Albert Andaluz; Manel Ballester;Francesc Carreras Costa edit   pdf
url  doi
openurl 
  Title (up) Helical structure of the cardiac ventricular anatomy assessed by Diffusion Tensor Magnetic Resonance Imaging multi-resolution tractography Type Journal Article
  Year 2013 Publication Revista Española de Cardiología Abbreviated Journal REC  
  Volume 66 Issue 10 Pages 782-790  
  Keywords Heart;Diffusion magnetic resonance imaging;Diffusion tractography;Helical heart;Myocardial ventricular band.  
  Abstract Deep understanding of myocardial structure linking morphology and function of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Several conceptual models of myocardial fiber organization have been proposed but the lack of an automatic and objective methodology prevented an agreement. We sought to deepen in this knowledge through advanced computer graphic representations of the myocardial fiber architecture by diffusion tensor magnetic resonance imaging (DT-MRI).
We performed automatic tractography reconstruction of unsegmented DT-MRI canine heart datasets coming from the public database of the Johns Hopkins University. Full scale tractographies have been build with 200 seeds and are composed by streamlines computed on the vectorial field of primary eigenvectors given at the diffusion tensor volumes. Also, we introduced a novel multi-scale visualization technique in order to obtain a simplified tractography. This methodology allowed to keep the main geometric features of the fiber tracts, making easier to decipher the main properties of the architectural organization of the heart.
On the analysis of the output from our tractographic representations we found exact correlation with low-level details of myocardial architecture, but also with the more abstract conceptualization of a continuous helical ventricular myocardial fiber array.
Objective analysis of myocardial architecture by an automated method, including the entire myocardium and using several 3D levels of complexity, reveals a continuous helical myocardial fiber arrangement of both right and left ventricles, supporting the anatomical model of the helical ventricular myocardial band described by Torrent-Guasp.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.044; 600.060 Approved no  
  Call Number IAM @ iam @ PGM2013 Serial 2194  
Permanent link to this record
 

 
Author Ferran Poveda; Enric Marti; Debora Gil; Francesc Carreras; Manel Ballester edit   pdf
url  doi
openurl 
  Title (up) Helical Structure of Ventricular Anatomy by Diffusion Tensor Cardiac MR Tractography Type Journal Article
  Year 2012 Publication Journal of American College of Cardiology Abbreviated Journal JACC  
  Volume 5 Issue 7 Pages 754-755  
  Keywords  
  Abstract It is widely accepted that myocardial fiber architecture plays a critical role in myocardial contractility and relaxation (1). However, there is a lack of consensus about the distribution of the myocardial fibers and their spatial arrangement in the left and right ventricles. An understanding of the cardiac architecture should benefit the ventricular functional assessment, left ventricular reconstructive surgery planning, or resynchronization therapy in heart failure. Researchers have proposed several conceptual models to describe the architecture of the heart, ranging from gross dissection to histological presentation. The cardiac mesh model (2) proposes that the myocytes are arranged longitudinally and radially change their angulation along the myocardial depth. By contrast, the helical ventricular myocardial model states that the ventricular myocardium is a continuous anatomical helical layout of myocardial fibers (1  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-878X ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PMG2012 Serial 1985  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title (up) Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
 

 
Author Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez edit   pdf
doi  openurl
  Title (up) Influence of fiber connectivity in simulations of cardiac biomechanics Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 14 Issue 1 Pages 63–72  
  Keywords Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity  
  Abstract PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 601.323; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GAB2019a Serial 3133  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title (up) Inhibition of false landmarks Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue 9 Pages 1022-1030  
  Keywords  
  Abstract Corners and junctions are landmarks characterized by the lack of differentiability in the unit tangent to the image level curve. Detectors based on differential operators are not, by their own definition, the best posed as they require a higher degree of differentiability to yield a reliable response. We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above requirements. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition produce our inhibition orientation energy (IOE) landmark locator.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication New York, NY, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GiR2006 Serial 1529  
Permanent link to this record
 

 
Author Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Esmitt Ramirez; Carles Sanchez edit   pdf
url  doi
openurl 
  Title (up) Intraoperative Extraction of Airways Anatomy in VideoBronchoscopy Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 159696 - 159704  
  Keywords  
  Abstract A main bottleneck in bronchoscopic biopsy sampling is to efficiently reach the lesion navigating across bronchial levels. Any guidance system should be able to localize the scope position during the intervention with minimal costs and alteration of clinical protocols. With the final goal of an affordable image-based guidance, this work presents a novel strategy to extract and codify the anatomical structure of bronchi, as well as, the scope navigation path from videobronchoscopy. Experiments using interventional data show that our method accurately identifies the bronchial structure. Meanwhile, experiments using simulated data verify that the extracted navigation path matches the 3D route.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GEB2020 Serial 3467  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: