|
Records |
Links |
|
Author |
Joel Barajas; Jaume Garcia; Francesc Carreras; Sandra Pujades; Petia Radeva |


|
|
Title |
Angle Images Using Gabor Filters in Cardiac Tagged MRI |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Proceeding of the 2005 conference on Artificial Intelligence Research and Development |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
107-114 |
|
|
Keywords |
Angle Images, Gabor Filters, Harp, Tagged Mri |
|
|
Abstract |
Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results. |
|
|
Address |
Amsterdam; The Netherlands |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IOS Press |
Place of Publication |
Amsterdam, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
1-58603-560-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CAIRD |
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ BGC2005; IAM @ iam |
Serial |
595 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva |

|
|
Title |
On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Proceeding of the 2005 conference on Artificial Intelligence Research and Development |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67-74 |
|
|
Keywords |
classification; vessel border modelling; IVUS |
|
|
Abstract |
IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IOS Press |
Place of Publication |
Amsterdam, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2005c |
Serial |
1549 |
|
Permanent link to this record |
|
|
|
|
Author |
Petia Radeva; A.Amini; J.Huang; Enric Marti |



|
|
Title |
Deformable B-Solids and Implicit Snakes for Localization and Tracking of SPAMM MRI-Data |
Type |
Conference Article |
|
Year |
1996 |
Publication |
Workshop on Mathematical Methods in Biomedical Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
192-201 |
|
|
Keywords |
|
|
|
Abstract |
To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ... |
|
|
Address |
San Francisco CA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IEEE Computer Society |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-8186-7368-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MMBIA ’96 |
|
|
Notes |
MILAB;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RAH1996 |
Serial |
1630 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil |


|
|
Title |
A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound |
Type |
Conference Article |
|
Year |
2010 |
Publication |
Computing in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
37 |
Issue |
|
Pages |
899-902 |
|
|
Keywords |
|
|
|
Abstract |
A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0276-6547 |
ISBN |
978-1-4244-7318-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CINC |
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HSM2010 |
Serial |
1551 |
|
Permanent link to this record |
|
|
|
|
Author |
Patricia Marquez; Debora Gil; Aura Hernandez-Sabate |


|
|
Title |
A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth |
Type |
Conference Article |
|
Year |
2011 |
Publication |
IEEE International Conference on Computer Vision – Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2042-2049 |
|
|
Keywords |
IEEE International Conference on Computer Vision – Workshops |
|
|
Abstract |
Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IEEE |
Place of Publication |
Barcelona (Spain) |
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCVW |
|
|
Notes |
IAM; ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MGH2011 |
Serial |
1682 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Andaluz; Francesc Carreras; Cristina Santa Marta;Debora Gil |


|
|
Title |
Myocardial torsion estimation with Tagged-MRI in the OsiriX platform |
Type |
Conference Article |
|
Year |
2012 |
Publication |
ISBI Workshop on Open Source Medical Image Analysis software |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IEEE |
Place of Publication |
|
Editor |
Wiro Niessen (Erasmus MC) and Marc Modat (UCL) |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISBI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ ACS2012 |
Serial |
1900 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Miguel Angel Gonzalez Ballester; Debora Gil |


|
|
Title |
A medial map capturing the essential geometry of organs |
Type |
Conference Article |
|
Year |
2012 |
Publication |
ISBI Workshop on Open Source Medical Image Analysis software |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1691 - 1694 |
|
|
Keywords |
Medial Surface Representation, Volume Reconstruction,Geometry , Image reconstruction , Liver , Manifolds , Shape , Surface morphology , Surface reconstruction |
|
|
Abstract |
Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Accurate computation of one pixel wide medial surfaces is mandatory. Those surfaces must represent faithfully the geometry of the volume. Although morphological methods produce excellent results in 2D, their complexity and quality drops across dimensions, due to a more complex description of pixel neighborhoods. This paper introduces a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Our experiments show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume |
|
|
Address |
Barcelona,Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1945-7928 |
ISBN |
978-1-4577-1857-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISBI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGG2012a |
Serial |
1989 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti |


|
|
Title |
A Case Study of Pattern Recognition: Symbol Recognition in Graphic Documentsa |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proceedings of Pattern Recognition in Information Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-13 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Angers, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
ICEIS Press |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
972-98816-3-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
PRIS'03 |
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LVS2003 |
Serial |
1576 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Garcia; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva |


|
|
Title |
An intuitive validation technique to compare local versus global tagged MRI analysis |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Computers In Cardiology |
Abbreviated Journal |
|
|
|
Volume |
32 |
Issue |
|
Pages |
29–32 |
|
|
Keywords |
|
|
|
Abstract |
Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account |
|
|
Address |
Lyon (France) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-7803-9337-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GBC2005 |
Serial |
639 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux |


|
|
Title |
Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function |
Type |
Conference Article |
|
Year |
2008 |
Publication |
8th World Congress on Computational Mechanichs (WCCM8) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance. |
|
|
Abstract |
Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model. |
|
|
Address |
Venice; Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
9788496736559 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGV2008b |
Serial |
993 |
|
Permanent link to this record |