|
Records |
Links |
|
Author |
M. Gomez; J. Mauri; Eduard Fernandez-Nofrerias; Oriol Rodriguez-Leor; Carme Julia; Debora Gil; Petia Radeva |

|
|
Title |
Reconstrucción de un modelo espacio-temporal de la luz del vaso a partir de secuencias de ecografía intracoronaria |
Type |
Conference Article |
|
Year |
2002 |
Publication |
XXXVIII Congreso Nacional de la Sociedad Española de Cardiología. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords  |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GMF2002d |
Serial |
1516 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti |


|
|
Title |
Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy |
Type |
Conference Article |
|
Year |
2010 |
Publication |
8th Medical Imaging |
Abbreviated Journal |
|
|
|
Volume |
7623 |
Issue |
762304 |
Pages |
304 |
|
|
Keywords  |
|
|
|
Abstract |
Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SPIE |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGH2010a |
Serial |
1522 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; J. Mauri |

|
|
Title |
Ivus Segmentation Via a Regularized Curvature Flow |
Type |
Conference Article |
|
Year |
2002 |
Publication |
X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
133-136 |
|
|
Keywords  |
|
|
|
Abstract |
Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Saragossa, Espanya |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRM2002 |
Serial |
1536 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri |


|
|
Title |
Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach |
Type |
Conference Article |
|
Year |
2000 |
Publication |
International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
4 |
Issue |
|
Pages |
352-355 |
|
|
Keywords  |
|
|
|
Abstract |
Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRS2000a |
Serial |
1537 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Jordi Saludes; J. Mauri |

|
|
Title |
Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach |
Type |
Conference Article |
|
Year |
2000 |
Publication |
Proceedings of CIC’2000 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords  |
|
|
|
Abstract |
Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Cambridge, Massachussets |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIC |
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRS2000 |
Serial |
1538 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva; Fernando Vilariño |


|
|
Title |
Anisotropic Contour Completion |
Type |
Conference Article |
|
Year |
2003 |
Publication |
Proceedings of the IEEE International Conference on Image Processing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
I-869 |
|
|
Keywords  |
|
|
|
Abstract |
In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1. |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Barcelona, Spain |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
0-7803-7751-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICIP |
|
|
Notes |
IAM;MV;MILAB;SIAI |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GRV2003 |
Serial |
1539 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil |


|
|
Title |
A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound |
Type |
Conference Article |
|
Year |
2010 |
Publication |
Computing in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
37 |
Issue |
|
Pages |
899-902 |
|
|
Keywords  |
|
|
|
Abstract |
A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0276-6547 |
ISBN |
978-1-4244-7318-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CINC |
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HSM2010 |
Serial |
1551 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Petia Radeva; Antonio Tovar; Debora Gil |


|
|
Title |
Vessel structures alignment by spectral analysis of ivus sequences |
Type |
Conference Article |
|
Year |
2006 |
Publication |
Proc. of CVII, MICCAI Workshop |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
39-36 |
|
|
Keywords  |
|
|
|
Abstract |
Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Copenhaguen (Denmark), |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06) |
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HRT2006 |
Serial |
1552 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; J. Mauri; Petia Radeva |

|
|
Title |
Reducing cardiac motion in IVUS sequences |
Type |
Conference Article |
|
Year |
2006 |
Publication |
Proceeding of Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
33 |
Issue |
|
Pages |
685-688 |
|
|
Keywords  |
|
|
|
Abstract |
Cardiac vessel displacement is a main artifact in IVUS sequences. It hinders visualization of the main structures in an appropriate orientation and alignment and affects extracting vessel measurements. In this paper, we present a novel approach for image sequence alignment based on spectral analysis, which removes rigid dynamics, preserving at the same time the vessel geometry. First, we suppress the translation by taking, for each frame, the center of mass of the image as origin of coordinates. In polar coordinates with such point as origin, the rotation appears as a horizontal displacement. The translation induces a phase shift in the Fourier coefficients of two consecutive polar images. We estimate the phase by adjusting a regression plane to the phases of the principal frequencies. Experiments show that the presented strategy suppress cardiac motion regardless of the acquisition device. 1. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGM2006a |
Serial |
1554 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva; E.N.Nofrerias |


|
|
Title |
Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images |
Type |
Conference Article |
|
Year |
2004 |
Publication |
Proc. Computers in Cardiology |
Abbreviated Journal |
|
|
|
Volume |
31 |
Issue |
|
Pages |
229-232 |
|
|
Keywords  |
|
|
|
Abstract |
The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Chicago (USA) |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2004 |
Serial |
1555 |
|
Permanent link to this record |