|
Records |
Links |
|
Author |
Hanne Kause; Patricia Marquez; Andrea Fuster; Aura Hernandez-Sabate; Luc Florack; Debora Gil; Hans van Assen |
|
|
Title |
Quality Assessment of Optical Flow in Tagging MRI |
Type |
Conference Article |
|
Year |
2015 |
Publication |
5th Dutch Bio-Medical Engineering Conference BME2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
The Netherlands; January 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
BME |
|
|
Notes |
IAM; ADAS; 600.076; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KMF2015 |
Serial |
2616 |
|
Permanent link to this record |
|
|
|
|
Author |
Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; I.Araujo ; Maria Lopez Ceron; J.Llach; F. Javier Sanchez |
|
|
Title |
Colonic polyps are correctly identified by a computer vision method using wm-dova energy maps |
Type |
Conference Article |
|
Year |
2015 |
Publication |
Proceedings of 23 United European- UEG Week 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
UEG |
|
|
Notes |
MV; IAM; 600.075;SIAI |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBR2015 |
Serial |
2732 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Stable Airway Center Tracking for Bronchoscopic Navigation |
Type |
Conference Article |
|
Year |
2016 |
Publication |
28th Conference of the international Society for Medical Innovation and Technology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps. |
|
|
Address |
Delft; Rotterdam; Leiden; The Netherlands; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SMIT |
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
Admin @ si @ LSB2016a |
Serial |
2856 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Stable Anatomical Structure Tracking for video-bronchoscopy Navigation |
Type |
Conference Article |
|
Year |
2016 |
Publication |
19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Lung cancer diagnosis; video-bronchoscopy; airway lumen detection; region tracking |
|
|
Abstract |
Bronchoscopy allows to examine the patient airways for detection of lesions and sampling of tissues without surgery. A main drawback in lung cancer diagnosis is the diculty to check whether the exploration is following the correct path to the nodule that has to be biopsied. The most extended guidance uses uoroscopy which implies repeated radiation of clinical sta and patients. Alternatives such as virtual bronchoscopy or electromagnetic navigation are very expensive and not completely robust to blood, mocus or deformations as to be extensively used. We propose a method that extracts and tracks stable lumen regions at dierent levels of the bronchial tree. The tracked regions are stored in a tree that encodes the anatomical structure of the scene which can be useful to retrieve the path to the lesion that the clinician should follow to do the biopsy. We present a multi-expert validation of our anatomical landmark extraction in 3 intra-operative ultrathin explorations. |
|
|
Address |
Athens; Greece; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LSB2016b |
Serial |
2857 |
|
Permanent link to this record |
|
|
|
|
Author |
Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; G. Fonseka; M. Lawrie; Francesca Vidal; Zaida Sarrate |
|
|
Title |
Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study |
Type |
Conference Article |
|
Year |
2017 |
Publication |
11th European CytoGenesis Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Florencia; Italia; July 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECA |
|
|
Notes |
IAM; 600.096; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBG2017a |
Serial |
2936 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Debora Gil; T. Gache; N. Koufos; Marta Diez-Ferrer; Antoni Rosell |
|
|
Title |
SENSA: a System for Endoscopic Stenosis Assessment |
Type |
Conference Article |
|
Year |
2016 |
Publication |
28th Conference of the international Society for Medical Innovation and Technology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Documenting the severity of a static or dynamic Central Airway Obstruction (CAO) is crucial to establish proper diagnosis and treatment, predict possible treatment effects and better follow-up the patients. The subjective visual evaluation of a stenosis during video-bronchoscopy still remains the most common way to assess a CAO in spite of a consensus among experts for a need to standardize all calculations [1].
The Computer Vision Center in cooperation with the «Hospital de Bellvitge», has developed a System for Endoscopic Stenosis Assessment (SENSA), which computes CAO directly by analyzing standard bronchoscopic data without the need of using other imaging tecnologies. |
|
|
Address |
Rotterdam; The Netherlands; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SMIT |
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
Admin @ si @ SGG2016 |
Serial |
2942 |
|
Permanent link to this record |
|
|
|
|
Author |
Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate |
|
|
Title |
Unraveling the enigmas of chromosome territoriality during spermatogenesis |
Type |
Conference Article |
|
Year |
2017 |
Publication |
IX Jornada del Departament de Biologia Cel•lular, Fisiologia i Immunologia |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
UAB; Barcelona; June 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBG2017b |
Serial |
2959 |
|
Permanent link to this record |
|
|
|
|
Author |
Rosa Maria Ortiz; Debora Gil; Elisa Minchole; Marta Diez-Ferrer; Noelia Cubero de Frutos |
|
|
Title |
Classification of Confolcal Endomicroscopy Patterns for Diagnosis of Lung Cancer |
Type |
Conference Article |
|
Year |
2017 |
Publication |
18th World Conference on Lung Cancer |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.
The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.
We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results. |
|
|
Address |
Yokohama; Japan; October 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IASLC WCLC |
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OGM2017 |
Serial |
3044 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Aura Hernandez-Sabate; David Castells; Jordi Carrabina |
|
|
Title |
CYBERH: Cyber-Physical Systems in Health for Personalized Assistance |
Type |
Conference Article |
|
Year |
2017 |
Publication |
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Assistance systems for e-Health applications have some specific requirements that demand of new methods for data gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the environment and the user to issue personalized recommendations; 2) data analysis should be able to tackle a limited number of samples prone to include non-informative data and possibly evolving in time due to changes in patient condition; 3) algorithms should run in real time with possibly limited computational resources and fluctuant internet access.
Electronic medical devices (and CyberPhysical devices in general) can enhance the process of data gathering and analysis in several ways: (i) acquiring simultaneously multiple sensors data instead of single magnitudes (ii) filtering data; (iii) providing real-time implementations condition by isolating tasks in individual processors of multiprocessors Systems-on-chip (MPSoC) platforms and (iv) combining information through sensor fusion
techniques.
Our approach focus on both aspects of the complementary role of CyberPhysical devices and analysis of SmallData in the process of personalized models building for e-Health applications. In particular, we will address the design of Cyber-Physical Systems in Health for Personalized Assistance (CyberHealth) in two specific application cases: 1) A Smart Assisted Driving System (SADs) for dynamical assessment of the driving capabilities of Mild Cognitive Impaired (MCI) people; 2) An Intelligent Operating Room (iOR) for improving the yield of bronchoscopic interventions for in-vivo lung cancer diagnosis. |
|
|
Address |
Timisoara; Rumania; September 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SYNASC |
|
|
Notes |
IAM; 600.085; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GHC2017 |
Serial |
3045 |
|
Permanent link to this record |
|
|
|
|
Author |
Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil |
|
|
Title |
Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy |
Type |
Conference Article |
|
Year |
2018 |
Publication |
OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
11041 |
Issue |
|
Pages |
|
|
|
Keywords |
Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification |
|
|
Abstract |
Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems. |
|
|
Address |
Granada; September 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; 600.096; 600.075; 601.323; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2018b |
Serial |
3137 |
|
Permanent link to this record |