toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Joan Serrat; Enric Marti edit  openurl
  Title Elastic matching using interpolation splines Type Conference Article
  Year 1991 Publication IV Spanish Symposium of Pattern Recognition and image Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference  
  Notes ADAS;IAM; Approved no  
  Call Number IAM @ iam @ SMV1991 Serial 1651  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title Learning of structural descriptions of graphic symbols using deformable template matching Type Conference Article
  Year 2001 Publication Proc. Sixth Int Document Analysis and Recognition Conf Abbreviated Journal  
  Volume Issue Pages 455-459  
  Keywords  
  Abstract Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VMA2001 Serial 1654  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  isbn
openurl 
  Title Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework Type Conference Article
  Year 2000 Publication Proc. 15th Int Pattern Recognition Conf Abbreviated Journal  
  Volume 2 Issue Pages 239-242  
  Keywords  
  Abstract Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7695-0750-6 Medium  
  Area (down) Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM2000 Serial 1656  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
url  doi
openurl 
  Title Application of deformable template matching to symbol recognition in hand-written architectural draw Type Conference Article
  Year 1999 Publication Proceedings of the Fifth International Conference on Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bangalore (India) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1999a Serial 1657  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit  openurl
  Title Recognition of lineal symbols in hand-written drawings using deformable template matching Type Conference Article
  Year 1999 Publication Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1999 Serial 1658  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit  openurl
  Title Dimensions analysis in hand-drawn architectural drawings Type Conference Article
  Year 1997 Publication (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages 90-91  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication CVC-UAB Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1997 Serial 1659  
Permanent link to this record
 

 
Author Ernest Valveny; Ricardo Toledo; Ramon Baldrich; Enric Marti edit  openurl
  Title Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching Type Conference Article
  Year 2002 Publication Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 Abbreviated Journal  
  Volume Issue Pages 502–507  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference  
  Notes DAG;RV;CAT;IAM;CIC;ADAS Approved no  
  Call Number IAM @ iam @ VTB2002 Serial 1660  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title L Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference CAIP  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
url  isbn
openurl 
  Title An inference model for analyzing termination conditions of Evolutionary Algorithms Type Conference Article
  Year 2011 Publication 14th Congrès Català en Intel·ligencia Artificial Abbreviated Journal  
  Volume Issue Pages 216-225  
  Keywords Evolutionary Computation Convergence, Termination Conditions, Statistical Inference  
  Abstract In real-world problems, it is mandatory to design a termination condition for Evolutionary Algorithms (EAs) ensuring stabilization close to the unknown optimum. Distribution-based quantities are good candidates as far as suitable parameters are used. A main limitation for application to real-world problems is that such parameters strongly depend on the topology of the objective function, as well as, the EA paradigm used.
We claim that the termination problem would be fully solved if we had a model measuring to what extent a distribution-based quantity asymptotically behaves like the solution accuracy. We present a regression-prediction model that relates any two given quantities and reports if they can be statistically swapped as termination conditions. Our framework is applied to two issues. First, exploring if the parameters involved in the computation of distribution-based quantities influence their asymptotic behavior. Second, to what extent existing distribution-based quantities can be asymptotically exchanged for the accuracy of the EA solution.
 
  Address Lleida, Catalonia (Spain)  
  Corporate Author Associació Catalana Intel·ligència Artificial Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-60750-841-0 Medium  
  Area (down) Expedition Conference CCIA  
  Notes IAM Approved no  
  Call Number IAM @ iam @ RGG2011a Serial 1677  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
openurl 
  Title Using statistical inference for designing termination conditions ensuring convergence of Evolutionary Algorithms Type Conference Article
  Year 2011 Publication 11th European Conference on Artificial Life Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract A main challenge in Evolutionary Algorithms (EAs) is determining a termination condition ensuring stabilization close to the optimum in real-world applications. Although for known test functions distribution-based quantities are good candidates (as far as suitable parameters are used), in real-world problems an open question still remains unsolved. How can we estimate an upper-bound for the termination condition value ensuring a given accuracy for the (unknown) EA solution?
We claim that the termination problem would be fully solved if we defined a quantity (depending only on the EA output) behaving like the solution accuracy. The open question would be, then, satisfactorily answered if we had a model relating both quantities, since accuracy could be predicted from the alternative quantity. We present a statistical inference framework addressing two topics: checking the correlation between the two quantities and defining a regression model for predicting (at a given confidence level) accuracy values from the EA output.
 
  Address Paris, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area (down) Expedition Conference ECAL  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ RGG2011b Serial 1678  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: