toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author H. Martin ; Jens Fagertun; Sergio Vera; Debora Gil edit   pdf
openurl 
  Title Medial structure generation for registration of anatomical structures Type (up) Book Chapter
  Year 2017 Publication Skeletonization, Theory, Methods and Applications Abbreviated Journal  
  Volume 11 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ MFV2017a Serial 2935  
Permanent link to this record
 

 
Author Debora Gil; Jordi Gonzalez; Gemma Sanchez (eds) edit  isbn
openurl 
  Title Computer Vision: Advances in Research and Development Type (up) Book Whole
  Year 2007 Publication Proceedings of the 2nd CVC International Workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UAB Place of Publication Bellaterra (Spain) Editor Debora Gil; Jordi Gonzalez; Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title 2 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-935251-4-9 Medium  
  Area Expedition Conference  
  Notes IAM; ISE; DAG Approved no  
  Call Number IAM @ iam @ GGS2007 Serial 1493  
Permanent link to this record
 

 
Author Jaume Garcia edit   pdf
openurl 
  Title Statistical Models of the Architecture and Function of the Left Ventricle Type (up) Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Gar2009a Serial 1499  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title Geometric Differential Operators for Shape Modelling Type (up) Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type (up) Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-6-4 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2009 Serial 1543  
Permanent link to this record
 

 
Author Enric Marti; Jordi Vitria; Alberto Sanfeliu edit   pdf
isbn  openurl
  Title Reconocimiento de Formas y Análisis de Imágenes Type (up) Book Whole
  Year 1998 Publication Asociación Española de Reconocimientos de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los sistemas actuales de reconocimiento automático del lenguaje oral se basan en dos etapas básicas de procesado: la parametrización, que extrae la evolución temporal de los parámetros que caracterizan la voz, y el reconocimiento propiamente dicho, que identifica la cadena de palabras de la elocución recibida con ayuda de los modelos que representan el conocimiento adquirido en la etapa de aprendizaje. Tomando como línea divisoria la palabra, dichos modelos son de tipo acústicofonético o gramatical. Los primeros caracterizan las palabras incluidas en el vocabulario de la aplicación o tarea a la que está orientado el sistema de reconocimiento, usando a menudo para ello modelos de unidades de habla de extensión inferior a la palabra, es decir, de unidades subléxicas. Por otro lado, la gramática incluye el conocimiento acerca de las combinaciones permitidas de palabras para formar las frases o su probabilidad. Queda fuera del esquema la denominada comprensión del habla, que utiliza adicionalmente el conocimiento semántico y pragmático para captar el significado de la elocución de entrada al sistema a partir de la cadena (o cadenas alternativas) de palabras que suministra el reconocedor.  
  Address  
  Corporate Author Thesis  
  Publisher AERFAI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84–922529–4–4 Medium  
  Area Expedition Conference  
  Notes IAM;OR;MV Approved no  
  Call Number IAM @ iam @ MVS1998 Serial 1620  
Permanent link to this record
 

 
Author Ferran Poveda edit  openurl
  Title Computer Graphics and Vision Techniques for the Study of the Muscular Fiber Architecture of the Myocardium Type (up) Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Pov2013 Serial 2417  
Permanent link to this record
 

 
Author Carles Sanchez edit  isbn
openurl 
  Title Tracheal Structure Characterization using Geometric and Appearance Models for Efficient Assessment of Stenosis in Videobronchoscopy Type (up) Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent advances in endoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures. Among all endoscopic modalities, bronchoscopy is one of the most frequent with around 261 millions of procedures per year. Although the use of bronchoscopy is spread among clinical facilities it presents some drawbacks, being the visual inspection for the assessment of anatomical measurements the most prevalent of them. In
particular, inaccuracies in the estimation of the degree of stenosis (the percentage of obstructed airway) decreases its diagnostic yield and might lead to erroneous treatments. An objective computation of tracheal stenosis in bronchoscopy videos would constitute a breakthrough for this non-invasive technique and a reduction in treatment cost.
This thesis settles the first steps towards on-line reliable extraction of anatomical information from videobronchoscopy for computation of objective measures. In particular, we focus on the computation of the degree of stenosis, which is obtained by comparing the area delimited by a healthy tracheal ring and the stenosed lumen. Reliable extraction of airway structures in interventional videobronchoscopy is a challenging task. This is mainly due to the large variety of acquisition conditions (positions and illumination), devices (different digitalizations) and in videos acquired at the operating room the unpredicted presence of surgical devices (such as probe ends). This thesis contributes to on-line stenosis assessment in several ways. We
propose a parametric strategy for the extraction of lumen and tracheal rings regions based on the characterization of their geometry and appearance that guide a deformable model. The geometric and appearance characterization is based on a physical model describing the way bronchoscopy images are obtained and includes local and global descriptions. In order to ensure a systematic applicability we present a statistical framework to select the optimal
parameters of our method. Experiments perform on the first public annotated database, show that the performance of our method is comparable to the one provided by clinicians and its computation time allows for a on-line implementation in the operating room.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-9-5 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ San2014 Serial 2575  
Permanent link to this record
 

 
Author David Roche edit  openurl
  Title A Statistical Framework for Terminating Evolutionary Algorithms at their Steady State Type (up) Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract As any iterative technique, it is a necessary condition a stop criterion for terminating Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm should stop at the time it has reached a steady state so it can not improve results anymore. Assessing the reliability of termination conditions for EAs is of prime importance. A wrong or weak stop criterion can negatively a ect both the computational e ort and the nal result.
In this Thesis, we introduce a statistical framework for assessing whether a termination condition is able to stop EA at its steady state. In one hand a numeric approximation to steady states to detect the point in which EA population has lost its diversity has been presented for EA termination. This approximation has been applied to di erent EA paradigms based on diversity and a selection of functions covering the properties most relevant for EA convergence. Experiments show that our condition works regardless of the search space dimension and function landscape and Di erential Evolution (DE) arises as the best paradigm. On the other hand, we use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in xspace.
Our theoretical framework is analyzed across several benchmark test functions
and two standard termination criteria based on function improvement in f-space and EA population x-space distribution for the DE paradigm. Results validate our statistical framework as a powerful tool for determining the capability of a measure for terminating EA and select the x-space distribution as the best-suited for accurately stopping DE in real-world applications.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Jesus Giraldo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Roc2015 Serial 2686  
Permanent link to this record
 

 
Author Patricia Marquez edit  isbn
openurl 
  Title A Confidence Framework for the Assessment of Optical Flow Performance Type (up) Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance.

This thesis provides a framework able to decide which pairs “ optical flow – confidence measure” (OF-CM) are best suited for optical flow error bounding given a confidence level determined by a decision support system. To design this framework we cover the following points:

Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance.
Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pair for error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.

The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Aura Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-2-1 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Mar2015 Serial 2687  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: