
Exploring Arterial Dynamics and

Structures in IntraVascular UltraSound

Sequences

A dissertation submitted by Aura Hernàndez
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Agräıments

L’obtenció del t́ıtol de doctora implica assolir el grau acadèmic més alt. Ja he acabat
d’estudiar? Potser des del punt de vista acadèmic śı, però segurament no des de cap
altre. Durant aquests 6 anys, que es compliran el dia que defensi aquest treball, he
après molt́ıssimes coses a nivell acadèmic, però també a molts altres nivells, sobretot
el personal. Ha estat una etapa que s’ha fet llarga a èpoques i molt curta a d’altres.

Una etapa amb llargues hores de discussió per intentar que el món de les ecografies
intra-coronàries, entre d’altres, sigui una mica més planer. Hores en que la foscor
semblava guanyar terreny i hores en què el cel era a tocar. Però per sobre de tot,
hores de dedicació i entusiasme on he après que la intüıció i la perseverança et porten
per bons camins. Una etapa acompanyada de tot tipus de persones. Persones que
m’han transmès la seva passió per la investigació. Persones que sempre tenen un
moment per discutir de qualsevol cosa, ja sigui sobre mètodes de comparació múltiple
o de si els de l’obra del davant posen en perill les nostres vides. Hores també de
despatx on, a part de treballar i discutir si és millor el windows o el linux, hem fet
pessebres, hem rigut, ens hem renyat i hem discutit sobre el nostre futur. He conviscut
el dia a dia amb grans persones, que m’han ensenyat a respectar més els altres, que
m’han cuidat en els moments baixos i que m’han enriquit amb les seves visions de la
vida.

Aquesta etapa també ha tingut les seves hores de docència. Hores en contacte amb
alumnes de 20 anys (i alguns més), que et contagien les ganes de menjar-se el món i
et recorden que la vida són dos dies i que cal viure-la. Però les classes no haguessin
estat les mateixes sense la preparació prèvia. Preparació enriquida amb els diferents
punts de vista sobre la filosofia docent. Intercanvis d’opinions vàries sobre quin és el
millor mètode a seguir perquè els alumnes aprenguin, perquè no copïın, perquè no es
rebel·lin... i no oblidem les batalletes explicades pels més experts en la matèria, de
qui s’aprèn més!

Totes aquestes hores, a vegades més de les que toca, han ocupat la meva jornada
laboral. I moltes hores també han estat fora d’aquesta, ja sigui a l’hora de dinar o
fent un cafè. Però a l’hora de dinar intentem desconnectar de la recerca i la docència
i riure una mica del véı. D’això se n’han encarregat molt bé alguns grans amics i unes
bones orelles. Alguns han vingut més tard, altres ja han marxat, altres han vingut de
pas i altres vénen de tant en tant, però el requisit principal és saber riure de qualsevol
cosa i voler passar una bona estona. Al cap i a la fi, darrere d’aquests escarnis hi ha
males persones que van de bones persones que van de males persones. O no era aix́ı?!

I també han estat molts cigarrets! Tot i que fa més d’un any que no fumo, ha
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ii AGRAÏMENTS

estat molt quitrà consumit, controlant les obres i arreglant el món, sempre molt ben
acompanyada de persones que, com jo, buscaven 10 minuts per respirar ”aire pur”.
Persones que m’han animat a posar aquests agräıments. Persones que, tot i no fumar,
m’acompanyaven mentre feien el cafè, tot mostrant-me amb les seves experiències que
la vida no és en blanc i negre, sinó que té 256 nivells de gris i cal pensar en el futur.
Amics que saben apreciar una bona caminada pel campus i una bona xocolata i que
saps que són allà en moments importants de la teva vida.

Resumint, durant aquests anys he conegut i retrobat grans persones. Persones que
han confiat en mi. Persones que m’han fet riure i persones que m’han fet plorar. Per-
sones que sorprenen i persones que apareixen quan menys t’ho esperes. En definitiva,
persones que no m’han deixat indiferent al llarg d’aquesta etapa i que m’han ajudat,
d’una manera o d’una altra, a créixer en molts aspectes.

Però abans d’aquesta etapa ja hi havia grans persones. Amigues que encara no
saben exactament el que faig o que creuen que perdo el temps, però que tot i aix́ı em
donen suport sempre que el necessito i comparteixen les meves alegries sempre que
es pot. Familiars que creuen que faig coses molt rares o que gràcies a mi no es volen
dedicar al món de la investigació, però que també estan allà quan cal, ja sigui per
escoltar o per celebrar. Com a familiar especial he de parlar del meu fill adoptiu, que
també ha estat pels detalls matemàtics que jo ja he oblidat o per escoltar-me quan
és necessari. I no m’oblido de les persones més importants de la meva vida fins al
moment, els meus pares i el Llúıs, que han cregut en mi des del primer moment i han
tingut la paciència d’escoltar-me i aguantar-me durant tots aquests anys.

És per tot això que us dono les gràcies a totes les persones que, en els moments
més baixos d’aquesta història, heu estat allà, d’una forma o una altra, però també a
totes les que heu sabut gaudir dels seus moments àlgids i heu compartit amb mi la
seva celebració.



Resum

Les malalties cardiovasculars són una de les principals causes de mortalitat als päısos
desenvolupats. La majoria d’elles són degudes a malalties arterials (especialment les
coronàries), que vénen causades per l’acumulació de placa. Aquesta patologia es-
treny el flux sanguini (estenosi) i afecta les propietats elàstiques i bio-mecàniques
(arteriosclerosi) de les artèries. En les últimes dècades, l’Ecografia Intra-Coronària
(EIC) ha esdevingut una tècnica usual de diagnòstic per la imatge i seguiment de les
malalties coronàries. L’EIC està basada en un cateterisme que mostra una seqüència
d’imatges corresponents a seccions de l’artèria sota estudi. La inspecció visual de
cadascuna d’aquestes imatges proporciona informació sobre el percentatge d’estenosi,
mentre que la inspecció de les vistes longitudinals propociona informació sobre les
propietats bio-mecàniques, que pot prevenir un desenllaç fatal de la malaltia cardio-
vascular. Per una banda, la dinàmica arterial (deguda al batec del cor, entre d’altres)
és un dels principals artefactes per poder explorar les propietats biomecàniques. Al
mateix temps, les mesures manuals d’estenosi requereixen un traçat manual de les
vores del vas, tasca feixuga que consumeix molt de temps i que pot patir variabilitat
entre observadors.

Aquesta tesi proposa vàries eines de processament d’imatge per explorar la dinàmica
de les artèries i les seves estructures. Presentem un model f́ısic per extreure, analitzar
i corregir la dinàmica ŕıgida transversal dels vasos i per recuperar la fase card́ıaca.
A més, introdüım un mètode estad́ıstic-determinista per a la detecció automàtica de
les vores del vas. En particular, l’enfoquem a segmentar l’advent́ıcia. Un protocol de
validació acurat per assegurar una aplicació cĺınica fiable del mètodes és un pas crucial
en qualsevol proposta d’algorisme. En aquesta tesi tenim especial cura de dissenyar
protocols de validació per a cadascuna de les tècniques proposades i contribüım a la
validació de la dinàmica in vivo amb un indicador objectiu i quantitatiu per mesurar
la quantitat de moviment suprimida.
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Abstract

Cardiovascular diseases are a leading cause of death in developed countries. Most of
them are caused by arterial (specially coronary) diseases, mainly caused by plaque
accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio-
mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular
UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow
up of arterial diseases. IVUS is a catheter-based imaging technique which shows a
sequence of cross sections of the artery under study. Inspection of a single image gives
information about the percentage of stenosis. Meanwhile, inspection of longitudinal
views provides information about artery bio-mechanical properties, which can prevent
a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due
to heart pumping among others) is a major artifact for exploring tissue bio-mechanical
properties. On the other one, manual stenosis measurements require a manual tracing
of vessel borders, which is a time-consuming task and might suffer from inter-observer
variations.

This PhD thesis proposes several image processing tools for exploring vessel dy-
namics and structures. We present a physics-based model to extract, analyze and
correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we
introduce a deterministic-statistical method for automatic vessel borders detection.
In particular, we address adventitia layer segmentation. An accurate validation pro-
tocol to ensure reliable clinical applicability of the methods is a crucial step in any
proposal of an algorithm. In this thesis we take special care in designing a valida-
tion protocol for each approach proposed and we contribute to the in vivo dynamics
validation with a quantitative and objective score to measure the amount of motion
suppressed.
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Introduction

There is general consensus that cardiovascular diseases (cerebrovascular, peripheral
arterial, coronary heart, and strokes among others) are a leading cause of death.
According to the World Health Organization1, they constitute approximately a 30%
of all global deaths and they are projected to remain the single leading causes of
death. Among cardiovascular diseases, coronary heart pathologies (which can trigger
anginas and heart strokes, for instance) constitute the gross of these deaths with a
33%.

Artery diseases are mainly caused by the accumulation of plaque (made up of a
combination of blood cholesterol, fat and cells) inside arterial walls [1]. Such plaque
accumulation narrows the artery’s blood flow (stenosis) and makes arteries inflaming
and being less flexible (atherosclerosis). Artery blood flow reduction is measured by
the percentage of obstruction in vessel sections and is a usual measurement previ-
ous to decide which is the best treatment (either surgical or pharmacological) for an
atherosclerotic lesion. Depending on the histological composition of the plaque, its
(bio-mechanical) physical behavior will be different, making it more or less unsta-
ble (vulnerable plaques) and, thus, resulting in a different risk for the patient [2].
Early detection of plaque composition is a main step for planning the most suitable
treatment (angioplasty, stent apposition, ...) and might prevent further thrombosis
potentially leading to a fatal heart attack. Tissue bio-mechanical properties play an
important role in the diagnosis and treatment of cardiovascular diseases. The main
mechanical properties currently under study are radial strain, which is related to
plaque type and vulnerability [3], and shear stress, which influences the probability
of plaque accumulation [4]. Both measures can be computed by means of the study
of vessel tissue deformation along the cardiac cycle.

IntraVascular UltraSound Imaging

IntraVascular UltraSound (IVUS) [5] is a wide used catheter-based technique which
provides cross-sectional views of the artery. A guide wire with a catheter inside is
threaded through the coronary artery under study. A catheter is composed of a Radio
Frequency (RF) emitter and a transducer. The RF emitter sends ultrasound waves
whose beams are reflected on arterial tissue particles and collected by the transducer.
Images are reconstructed from the reflection of this signal, so, its grey level is related to
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tissue density of mass [6,7]. The catheter is mechanically pulled back with a constant
velocity (usually at 0.5 mm/s) along the artery providing a sequence (digitized at
20-30 frames per second) of IVUS images.

Figure 1 shows a block of IVUS images obtained from a pullback (on the left) and
the two kind of images derived from them (on the right). Each sequence frame (on
the top right) shows a cross-section of the vessel under study with a complete detail
of its morphology. It follows that inspection of IVUS images provides the physician
a complete study of the vessel morphology, such as arterial wall layers, lumen area or
plaque composition (stenosis assessment). The frames on the left can be intersected
by a longitudinal plane including the catheter trajectory (grey plane on fig.1, left
graphic), defined by a fixed angle on cross sections. The image obtained in this way
is called longitudinal cut of the artery (bottom-right image). The longitudinal cut of
the figure corresponds to 401 frames, while the 16 frames on the left correspond to a
thin stripe of the whole longitudinal cut. Such views allow observing the evolution of
the vessel along the pullback and, thus, their exploring reflects the arterial flexibility
and tissue mechanical properties (atherosclerosis).

Figure 1: Images derived from an IVUS pullback. The left image is a block of 16
IVUS consecutive frames from a constant pullback. The right top image is a single
cross-section of the vessel. The right bottom image is a longitudinal view obtained
by intersecting 401 frames with the grey plane at the same angle.

Figure 2 shows the analogy between a cross-sectional histological cut of an artery
(left image) and the corresponding IVUS image (right image). In muscular arteries,
like coronary arteries, there are frequently three layers [8]. The innermost layer con-
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Figure 2: IntraVascular UltraSound single image inspection. On the left, a cross-
sectional histological cut of the vessel with its most frequent vessel structures. On
the right, its corresponding cross-sectional IVUS image.

sists of a set of three elements: intima, atheroma (in diseased vessels), and internal
elastic membrane. Moving outward from the lumen (the inside space where blood
flows), the second layer is the media, which is usually less homogeneous than the in-
tima. The third and outer layer consists of the adventitia and peri-adventitial tissues.
The membrane separating the second and the third layers corresponds to the exter-
nal elastic membrane (EEM). Vessel plaque accumulates between intima and media.
Depending on the disease of the artery, there exist different kind of plaques: calcified,
soft, fibrous, and mixed plaque. On the right side of figure 2 we have the visualization
of the layers and plaque in an IVUS cross-section. The contour between lumen and
intima, depicted in red, corresponds to the internal elastic membrane. The trailing
edge of the intima cannot always be distinguished clearly because in some cases the
media may appear artifactually thin because of an intense reflection from the intima
or external elastic membrane. In the IVUS image of fig.2, the intima-media layer is
not visible. However, a discrete interface at the border between the media and the
adventitia is almost invariably present within IVUS images and corresponds closely
to the location of the EEM, which is colored in yellow. There is no distinct boundary
on IVUS images separating the true adventitia from surrounding perivascular tissues.
Regarding plaque, its intensity increases proportionally to its density of mass, so that,
soft, fibrous and calcium appear with increasing brightness. In the IVUS image of
fig.2, there is a calcified plaque (colored in green) in the second quadrant. The differ-
ential feature of calcium is the echo shadow behind it due to its echo opacity. Another
shadow usually observed in an IVUS image is the artifact produced by the guide wire
reflection (in the fourth quadrant of the image).

The qualitative description of the artery provided by IVUS images enables the
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assessment of several measurements such as stenosis, EEM and lumen areas. The
percentage of stenosis is computed as the ratio between the area of the lumen and the
area of the EEM times 100. Lumen measurements are performed using the interface
between the lumen and the leading edge of the intima. All these measurements re-
quire an accurate segmentation of vessel borders for the whole sequence block. For a
segment of 25 mm. long, it implies exploring about 5000-7500 frames (depending on
the frame rate) in a standard intervention. Such huge amount of frames implies that
an exhaustive quantitative manual exploring is not feasible in clinical practice. Fur-
thermore, by the low image quality due to speckle noise, a manual processing, apart
from being a tedious time consuming task, might suffer from intra- and inter- observer
variability. Artifacts such as shadow caused by the catheter guide wire or shadows
caused by calcium reflection, hinders performance of standard image processing tech-
niques. This has motivated intensive research for developing segmentation algorithms
as automatic as possible.

Figure 3: Longitudinal Cut of an IVUS Sequence showing the behavior of the main
vessel structures pointed out on the above single image.

Figure 3 shows a longitudinal view of the vessel. The horizontal axis correspond
to the pullback direction and the vertical axis to the radial direction of an IVUS
frame. Vessel layers are colored as is figure 2. Longitudinal views allow exploring the
behavior of the vessel along the pullback for the assessment of radial deformation and
elastic properties of structures. Unlike other vascular structures, coronary arteries are
placed on the heart surface, partially embedded on the epicardial surface of the cardiac
muscles. Heart beating, pulsatile blood flow and intrinsic properties (anatomical,
mechanical, physiological and so on) of the vessel, added to breathing of the patient
endow the artery with a dynamical behavior. Vessel dynamics during in vivo pullbacks
and the complex motion of the imaging catheter inside the coronary vessels result in
longitudinal and in-plane motion artifacts during the acquisitions.
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Figure 4: Swinging effect in longitudinal cuts. White lines at the same angle in
frames A, B, C (top images) correspond to the vertical lines in the longitudinal cut
(bottom image). The swinging bifurcation can be clearly noticed in both, cross-
sections and longitudinal cut.

Forward and backward longitudinal translation along the catheter axis [9] results
in a swinging effect on the reconstructed images. Such swinging motion produces a
sequence block with spatially shuffled frames. The shuffled sequence does not pro-
vide a faithful 3D reconstruction, hinders volumetric measurements and affect the
appearance of longitudinal views. Figure 4 illustrates the swinging effect caused by
off-plane dynamics. At the upper side of the figure, there are three IVUS images at
different pullback times. Image A shows a bifurcation on the 2nd quadrant of the
image, which disappears in image B and reappears closer to the main artery in image
C. The white lines at the same angle on both images correspond to the white lines
on the longitudinal cut at the bottom side of the figure, one for each frame. The
swinging bifurcation is clearly noticed in the upper profile of this longitudinal cut.

Vessel-catheter in-plane rigid dynamics introduces a misalignment of vessel struc-
tures between frames of a sequence block. This artifact causes a saw-tooth shape
appearance in longitudinal views and troubles tracking vessel deformation for evalua-
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tion of tissue elastic and bio-mechanical properties. Furthermore, it hinders a proper
3D exploring, both, visualization, accuracy of volumetric measurements, and plaque
analysis along the sequence [10]. Figure 5 illustrates artifacts induced by in-plane
dynamics. The upper profile shows the saw-tooth-shape pattern of the vessel intima
wall (dark line) introduced by relative vessel-catheter translation. The bottom profile
presents a structure misalignment due to the relative vessel-catheter rotation for an
echo-shadowing calcified plaque.

Figure 5: Artifacts in longitudinal cut appearance induced by in-plane dynamics.

Goal of the Thesis

The goal of this work is to develop image processing tools for improving cardiovascular
disease diagnoses through the analysis of IVUS sequences. It will cover the following
points:

1. Vessel Dynamics Exploring: In order to extract bio-mechanical properties
and improve vessel physical properties evaluation, we propose an approach to
extract, analyze and correct vessel rigid in-plane dynamics. As well, since the
swinging effect produced by cardiac motion hinders volumetric measurements,
we introduce a first approach to image based ECG gating.

2. Vessel Structures Exploring: In order to avoid the time consuming tasks
of manual vessel wall segmentation for stenosis measurements, we propose an
automatic approach to segment the media-adventitia layer.

3. Validation Protocols: Validation of any algorithm is an essential issue for
supporting their validity and applicability in clinical practice. Checking the
accuracy of the methods allows the evaluation of their performance, bringing
up their strengths and limitations. In medical imaging, validation is not easy
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to carry out for in vivo data. For each contribution we design specific protocols
taking special care of in vivo assessment.

Vessel Dynamics Exploring

We have split dynamics exploring in longitudinal and in-plane motion estimation

1. Longitudinal Motion

A usual way to minimize the impact of longitudinal motion artifacts is the use of
ECG-gated devices [11] and ECG gating methods [12, 13]. Both of them return a
static sequence by either capturing frames synchronized with heart dynamics [11] or
discarding those frames not synchronized with it [12, 13]. Synchronization can be
performed either on-line during acquisitions [12] or off-line by processing a standard
non-gated sequence [13]. On-line procedures require a specific hardware (not always
available) for acquiring frames at end-diastole. Off-line techniques require delicate
processes of the ECG signal for extracting a sequence sampling synchronized at end-
diastole given by ECG-peaks. In any case, a simultaneous acquisition of IVUS images
and ECG-signal is required. However, such acquisition is not supported by all com-
mercial devices and forces the introduction of two different catheters in the artery
which makes the intervention more invasive. Furthermore, without a 4D model of the
artery [14], these techniques only provide a reliable static model of the artery at end
diastole.

Although IVUS images dynamics, such as lumen area extrema, reflect cardiac
motion, the potential of IVUS images processing for retrieving cardiac phase from non-
gated sequences without ECG-signal still remains little explored. Existing strategies
[15, 16, 17, 18, 19] follow the scheme sketched in figure 6. First, a signal reflecting

Figure 6: Pipeline for Image-based Cardiac Phase Retrieval

cardiac motion is computed from IVUS sequences. Second, the signal is filtered (in
the Fourier domain) in order to remove non-cardiac phenomena and artifacts. Finally,
suitable sampling of the filtered signal retrieve cardiac phase. According to clinical
reports [20], maximum and minimum lumen areas correspond to end-systole and
end-diastole. By the physical coupling [21], lumen area evolution is related to other
phenomena induced by cardiac motion, such as the evolution along the sequence of
tissue density of mass. All authors agree in using the extrema of filtered signals for
sampling at end-systole and diastole. The main differences among existing algorithms
and thus, the clue for an accurate cardiac phase retrieval, are on the signal computed
from the sequence and the filter used to extract the cardiac profile.

Cardiac phase is obtained by exploring the temporal changes of either vessel struc-
tures (which needs its previous segmentation [15, 16, 19]) or image grey-level (which
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requires a high dimensional feature space to detect coincident frames [18, 17]). Nad-
karni et al. [15] bases their approach on the changes of lumen size. Zhu et al [16]
propose two different methods, based on average intensity and absolute intensity dif-
ference of images along the sequence, to extract the signal containing cardiac phase.
Barajas et al [19] use longitudinal cuts to detect any change in structure, morphology
or plaque prone to be related to cardiac frequency. Meanwhile, Matsumoto et al. [17]
also study different standard similarity measures along the sequence to compute a
signal, which is further filtered using wavelets for cardiac profile retrieval. Besides,
O’Malley et al [18] bases their method on pairwise frames comparisons by normalized
cross-correlation. Regarding the filter used, all approaches agree to using a band-pass
filter, which band width and profile is crucial for a proper phase retrieval in large seg-
ments. Current approaches use wavelets filters such as Gabor [19], Butterworth [16]
and Daubechies [17]. An analysis of the best filter and band-width has not been
addressed so far.

2. In-plane Rigid Motion

ECG-gated models are suitable for volumetric measurements, visualization and pal-
pography techniques measuring peak tissue deformation at different intraluminal pres-
sures [22]. Nevertheless, for studying the compliance of the vessel wall [23, 20,24], as
well as determining tissue elastic properties [25, 22], the information of IVUS images
during a cardiac cycle is required. In this case, image misalignment due to in-plane
motion should be compensated.

Current approaches for motion compensation in IVUS work on three main do-
mains: image intensity [22,26], vessel geometric appearance [25] and radio frequency
(RF) signal [27]. Intensity based approaches rely on either registration [22] or track-
ing [26] strategies. In the case of large displacements, tracking [26] fails to yield the
expected results, while registration [28] requires exhaustive (computationally ineffi-
cient) search of the parametric space. Moreover, changes in image intensity from one
frame to the next one substantially affect the performance of intensity-based algo-
rithms. Explicit formulae of motion parameters overcome the limitation of capture
range, while the impact of morphological changes is reduced by including geometric
considerations to the algorithm. In this fashion, the motion artifact reduction devel-
oped in [25] achieves good results, as long as, only catheter translation compensation
is required. An alternate way of dealing with image intensity changes is considering
the RF signal [27]. On one hand, although IVUS images are reconstructed from RF
signals, not all IVUS devices allow recording and exporting such signals. On the other
one, vessel translation is given by the difference between the position of the center
of the catheter and the center of the vessel. Since the RF domain is defined in polar
coordinates centered at the catheter, translations are not straightforward and, in fact,
existing algorithms based on RF signals only address rotations.

Our Contribution - Physics-based models

The following contributions are proposed for estimating (and compensating) vessel
dynamics.
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1. Longitudinal Motion

Following the scheme adopted by most of the existing models (see scheme of fig. 6),
we approach the first two steps. First, we extract a signal reflecting motion and then
we filter it for extracting the cardiac profile. Two different approaches for extracting a
signal reflecting cardiac motion are presented: one based on the angle of rotation and
another one based on the grey-level local mean. Vessel dynamics is the contribution of
three main phenomena, in particular heart beat. It follows that the angle of rotation
profile contains information about heart phase. Since in ultrasonic images, pixel
intensity reflects the density of mass, the image Local Mean (LM) detects changes
in vessel appearance along the sequence. Such changes along the sequences are a
consequence of cardiac motion and morphological changes. Regarding the filter used
to remove noise and non-cardiac phenomena from cardiac signals, two families of
band-pass filters are proposed: Gaussian and Butterworth. For the first time we
address determining which strategy for cardiac phase retrieval is better suited, in
terms of a statistically significant better performance.

2. In-plane Rigid Motion

We model rigid in-plane dynamics as a rigid body motion [29]. Such motion is given
by a translation followed by a rotation. Explicit formulae for motion parameters
is provided by combining vessel appearance and shape. The algorithm takes into
account vessel geometry appearance for defining translation. In this manner, the
method supports morphological changes. By estimating rotation between consecutive
frames in the Fourier domain, the model has no limits on capture range. We show
that the main contributions to rigid dynamics are heart pumping, breathing of the
patient and vessel geometry. We provide a motion decomposition that decouples
cardiac signal from breathing motion and geometric evolution.

Vessel Structures Segmentation

Since the early years, many algorithms for a reliable intima detection have been pro-
posed [30,31,32,33,34,35,36,37,38,39,40,41]. By its inherent difficulty (its distance
from the transducer reduces sharpness in the border visual appearance), adventitia
modeling has been more limited [42, 43, 44, 45, 46, 47, 48, 49]. An accurate border
detection requires either elaborated strategies in the case of contour based segmenta-
tions [46,47,48,49,50], or a previous plaque and tissue characterization in the case of
classification strategies [44].

Usual techniques addressing segmentation of vessel contours (intima and adventi-
tia) rely on a single local image descriptor (usually edges) to guide a snake towards
the target structures [30,31,32,33,44,45,46,47,48,49,51,52]. Regardless of low quality
in IVUS images, adventitia detection adds the difficulty of a large variety of descrip-
tors, a weak visual appearance by a decrease in the ultrasonic pulse energy [7] and
incomplete contours due to echo opaque plaques (e.g. calcium) shadowing. It follows
that standard segmentation approaches do not suffice by their own and need exclusive
strategies to yield proper results. Some authors [30,31,32,49] combine transversal and
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longitudinal contours to endow the model with spatial continuity along the sequence.
In this case, the use of ECG-gated sequences [32, 33] significantly helps to achieve a
reliable segmentation of longitudinal cuts. Other approaches [34,37] manually restrict
a region of interest that serves to initialize a snake, although such initialization might
need to be updated along the sequence.

A common inconvenience of segmentations based on contour detection is that
they require some kind of image filtering to avoid fake responses. The poor image
quality as well as large variety of IVUS artifacts (calcium, side-branches, shadows,
catheter guide and blood back scatter) make standard anisotropic smoothing [53] fail
to achieve optimal results. In order to overcome these drawbacks, several approaches
have been proposed. The most simple strategy is to discard those images containing
too much artifacts [46]. Although this is a practical way of filtering, it runs the risk of
losing too much information for a reliable recovery of vessel borders. Others [38, 54],
directly handle radio frequency data and filter impulse responses of the transducer.
Unfortunately, raw data acquisition needs of a special device not always available in
standard clinical equipments.

Recent approaches [38,42,43,44,45,55] use classification strategies to better char-
acterize coronary structures (plaque and vessel borders). Although results are robust
to noise and artifacts, most of them [38, 44] require plaque classification to yield, as
a side result, lumen and media-adventitia segmentation. The only statistical pro-
posal that directly handles vessel borders detection is discriminant snakes [55], which
extract the a priori knowledge for the segmentation of the current frame from the
previous segmented image. Although they are well suited for border tracking (thus
avoiding any interaction along the sequence), they require an accurate segmentation
of the first sequence frame for each different case.

Our Contribution - A Deterministic-Statistical Strategy

Vessel borders detection should serve to characterize and quantify vessel plaque rather
than follow as a side result of a laborious plaque classification. A robust adventi-
tia segmentation should combine classification strategies with advanced filtering and
segmentation techniques [56]. In this thesis, we present a deterministic-statistical
strategy for computing medial-adventitia border segmentation.

The strategy we propose is a three-fold algorithm: 1) preprocessing of IVUS im-
ages, 2) selection of points on the vessel border and 3) segmentation of the extracted
points.

• In the preprocessing step, we present two different filters for sharpen vessel
borders appearance in the polar transform of each IVUS frame. The first filter
is based on a restricted anisotropic diffusion [57], whereas the second one profits
the method presented for suppressing in-plane rigid motion.

• Supervised classification techniques serve to compute 2 binary images: one for
calcium sectors and another one for vessel borders. The first image is a mask
that discards sectors of ambiguous information. The second one is a collection
of fragmented vessel segments that are modeled by computing an implicit closed
representation and, then, an explicit B-spline parameterization.
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• An anisotropic contour closing [58] yields the implicit closed model of vessel
segments conforming to the Gestalt principles of good continuation and avoiding
interpolation at calcium and side-branches sectors. Parametric B-spline snake
with the initial snake at the outer radius are used to compute the final explicit
compact model.

Validation Protocols

In general, a validation protocol should address two main issues: what we want
to validate (ground truth) and how we want to validate it (goodness measure and
statistics).

The first question refers to the definition of the ground truth or gold standard.
The main difficulty in medical imaging is that ground truth might not be always
available [59] or might suffer from inter- and intra- observer variability. In the case of
vessel dynamics estimation, ground truth cannot be easily extracted from in vivo im-
ages. Current solutions, base validation on either synthetic experiments or quantities
reflecting motion. Synthetic data is usually produced by means of mechanical phan-
toms [26,60,61]. Dynamic physical phantoms require an equipment not available at all
laboratories. Besides, we note that dynamic physical phantoms are prone to have two
sources of errors: one due to the phantom device and another one introduced by the
motion correcting algorithm. Concerning quantities reflecting motion, physical scores
obtained by another device [60] or implantation of biological markers [62] are com-
monly used. Implantation of biological markers is an invasive technique that might
not be used in human subjects. Meanwhile, measurements of quantities reflecting mo-
tion from other devices are not always feasible. In the case of anatomical structures
segmentation, ground truth is defined by manual identification of vessel structures.
Since manual identifications are prone to vary across observers, they provide a multi-
ple ground truth. This implies that an analysis of automated errors might not reflect,
by its own, the true accuracy of segmentations, since a large variation range might
be caused by a significant difference among expert models. A standard way [63] of
overcoming the above phenomena is by comparing automated errors to the variability
among different manual segmentations (inter-observer variability).

The second question involves defining a suitable ”goodness” score providing a re-
liable measure of the quality of the algorithm we are evaluating [64]. Such index can
be either a qualitative (subjective) score, usually obtained by a visual inspection of
processed images [12], or a quantitative (objective) measure. In the case of dynam-
ics assessment, in real pullbacks there is no objective error measure indicating the
amount of motion suppressed, since motion parameters are unknown. In most cases,
quality measures are either subjective measures, based on the visual appearance of
sequences and longitudinal cuts [65,13] or rely on extraction of vessel properties (such
as strain in [22, 66]). In the case of structures segmentation, comparison to manual
results [67,68,38,45,43,42,46,52,51,39] or other measurements as a reference [69,60]
are widely used. Comparison between estimated quantities and ground truth can be
done by using Haussdorff or Euclidean distances and might compare areas, means,
variances, standard deviations among others [64]. Statistical analysis of such distances
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determine if differences between ground truth and estimated quantities are significa-
tive or not. The most used statistics are T-Student test, Kolmogorov-Smirnof test
and confidence intervals. Correlation also indicates the relationship between ground
truth and estimated quantities and it is widely used [69,60,61,67].

Our Contribution - In-vivo Protocol Design

In this PhD thesis, we take special care in defining an objective validation protocol
for each of the issues addressed along the document in order to ensure a wide clinical
applicability.

• For assessing in-plane dynamics, we have created computational phantoms,
which parameters define our ground truth. They have been created by ap-
plying rigid motion profiles to still sequences distilled from in vivo pullbacks.
In order to show that the performance of our algorithm is independent of the
angular range considered, we have considered synthetic motion profiles sampled
to emulate a frame to frame rotational artifact ranging of 1 and 10 degrees. In
order to produce motions as realistic as possible (and not simply a perfect, even
if noise is added, synthetic profile) we use motion parameters extracted from in
vivo sequences. In order to ensure accuracy for any vessel, our phantoms cover
different morphologies. In the case of in vivo sequences we introduce a novel
quantitative score, the Conservation of Density Rate (CDR). The score bases on
the grounds of fluid mechanics conservation laws [70] and quantifies the changes
that the local density of mass (given by the image local mean) undergoes along
the sequence before and after motion compensation. Its correlation to motion
parameters accuracy is assessed on computational phantoms.

• For assessing longitudinal dynamics, manual samplings of sequences constitute
our ground truth. Since maximum and minimum lumen areas are related to
cardiac phase, those frames achieving extrema lumen areas in longitudinal cuts
have been selected by an observer. Distances between automatic and manual
samplings are our goodness measure which ranges are given in terms of means
and variances. We use the Nemenyi test to determine which of the proposed
strategies is the best for cardiac phase retrieval in terms of a significant statistical
difference.

• For assessing adventitia segmentation, ground truth has been defined by manual
tracings on IVUS images. In this case, four experts have been considered.
Inter-observer variability has been measured by obtaining the error measures
between two different observers. The quality measures used for validating this
strategy are absolute and signed distances and area differences A Student t-test
determines if there is any significant difference between manual and automatic
segmentations.
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The remains of this thesis are organized as follows. Chapter 1 introduces the main
theoretical mathematical concepts supporting the methods developed along this work.
Chapter 2 explains the contributions approaching artery rigid dynamics (in-plane and
longitudinal) compensation. Chapter 3 details our deterministic-statistic strategy
for exploring vessel structures. Chapter 4 describes validation protocols for each of
the theoretical contribution (in-plane dynamics, longitudinal motion and adventitia
segmentation). The experiments and discussion are presented in Chapter 5, and,
finally, conclusions and further lines are outlined at the end of the thesis.
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Chapter 1

Theoretical Issues

In this chapter we introduce the theoretical mathematical knowledge used along the
thesis. Section 1.1 explains the main transformations that vessels undergo. Fourier
development appears in many image processing tasks and it is used for estimating the
angle of rotation and it is detailed in 1.2 The processes and equations given in section
1.3 are used for smoothing IVUS images in the strategy for vessel structures segmen-
tation and recovering (completing) unconnected contours. For a compact model of
the adventitia contour a snake is required and it is introduced in section 1.4. Finally,
propositions supporting the theory of the chapter are proved in section 1.5.

1.1 Affine Maps

The dynamics of coronary arteries is mainly governed by the left ventricle motion,
blood pressure, and artery geometric properties [71, 21, 72]. The first order approxi-
mation to vessel dynamics is given by a linear transformation combining translation,
rotation, and scaling [73]. All of them are particular cases of affine maps. This sec-
tion formally describes the formulation as well as several properties useful for image
processing.

Affine transformations (rotations, translations and scalings) model any linear map
between images. Mathematically, they transform affine spaces. An affine space (Rn)
is described by means of a set of points E and a vector space. If we fix a point O ∈ E,
as origin of coordinates and a basis of the vectorial space V : {�e1, . . . , �en}, known as
axis of coordinates, the set S = {O; �e1, . . . , �en} is known as affine reference system.

Given an affine reference system, S, it associates to any point P ∈ E n affine
coordinates, (x1, . . . , xn) given by decomposing the vector

−−→
OP in the basis vectors

{�e1, . . . , �en} (see figure 1.1):

−−→
OP = (x1, . . . , xn) =

n�

i=1

xi�ei
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or equivalently:

P = O +
n�

i=1

xi�ei

Figure 1.1: Affine Coordinates of a point P ∼ (x, y)

In the above terms, an affine transformation f : E → E is defined as a linear map
which transforms one affine reference system onto another one. Let S = {O; �e1, �e2}
and S� = {O�; �e�1,

�e�2} be two different affine reference systems. The affine trans-
formation which transforms the points (x, y) ∈ S of the first system to the points
(x�, y�) ∈ S� of the second one, can be written as:

�
x�

y�

�
=

�
a11 a12

a21 a22

�
·
�

x
y

�
+

�
t1
t2

�
= A

�
x
y

�
+ �t (1.1)

As figure 1.2 illustrates, an affine transformation is a linear transformation map-
ping the axis {�e1, �e2} onto {�e�1,

�e�2} followed by the translation, which moves the origin
O to the other origin O�. The matrix A : (�e1, �e2) → (�e�1,

�e�2) corresponds to the trans-
formation of the vectorial space:

A =
�

< e1, e�1 > < e1, e�2 >
< e2, e�1 > < e2, e�2 >

�

while �t = O� −O corresponds to the translation of the origin of coordinates.
If A is a 2×2 real matrix, then by Jordan’s theorem [74], it is similar to its Jordan

canonical form. That is, there exist matrices Λ and Q, which satisfy:

A = QΛQ−1 (1.2)

where Q is a coordinate change in the vectorial space given by ξ and η:

ξ =< e1, ξ > e1+ < e2, ξ > e2 = ξ1e1 + ξ2e2

η =< e1, η > e1+ < e2, η > e2 = η1e1 + η2e2

and Λ is the Jordan canonical form.
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Figure 1.2: Affine Transformation

The matrix Λ can be classified by means of the eigenvalues of A, (λ1, λ2):

• In the case that λ1 �= λ2 ∈ R,

Λ =
�

λ1 0
0 λ2

�

and A has two linear independent vectors e�1, e
�
2

• In the case that λ1 = λ2 = λ ∈ R,

Λ =
�

λ 0
0 λ

�

if there exist two linear independent eigenvectors, e�1, e
�
2, and

Λ =
�

λ 1
0 λ

�

if there only exists one eigenvector, e�1.

• In the case that eigenvalues are not real, λ1 = λ2 ∈ C \ R,

Λ =
�

|λ1| · cos(argλ1) −|λ1| · sin(argλ1)
|λ1| · sin(argλ1) |λ1| · cos(argλ1)

�
(1.3)

In the particular case that A is symmetric, it diagonalizes, since its eigenvalues are
real and different, and, thus, its eigenvectors �ξ = (ξ1, ξ2) and �η = (η1, η2) are always
linear independent vectors. In fact, they are orthonormal vectors, i.e. they satisfy
�η = �ξ⊥(⇔ (η1, η2) = (−ξ2, ξ1)) and �ξ� = 1. It follows that Q satisfies Q−1 = Qt and
it is a rotation of angle θ, for θ the angle between �ξ and the first axis vector �e1:

Q =
�

cosθ −sinθ
sinθ cosθ

�
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In the case of arterial dynamics, the affine transformations involved are the fol-
lowing particular cases of the general equation (1.1):

1. Translation: In this case, A is the identity matrix, so that, the transformation
is given by:

T�t : R2 → R2

(x, y) �→ (x, y) + (t1, t2)

2. Rotation: In this case, �t = (0, 0) and the matrix A is a rotation:

Rθ : R2 → R2

(x, y) �→
�

cosθ −sinθ
sinθ cosθ

�
·
�

x
y

�

3. Scaling: In this case also �t = (0, 0) and A = Λ is a diagonal matrix, which
entries λ = (λ1, λ2) are the scaling factor:

Λ : R2 → R2

(x, y) �→
�

λ1 0
0 λ2

�
·
�

x
y

�

In the particular case of vessel in-plane dynamics, the main artifacts are rotational
and translational (scaling is related to arterial physical properties). Rotation and
translation are known as rigid motion since they do not alter shape size.

Rigid motion formulation simplifies in polar coordinates.

1.1.1 Affine Transformations in Polar Coordinates

Polar coordinates are defined by means of the distance to the origin (r) and the angle
(α) with the first coordinate axis of the affine reference system. It follows that if (x, y)
are the coordinates in the system {O; �e1, �e2}, then their transform is given by:

�
r =

�
x2 + y2

α = atan
� y

x

� (1.4)

In the particular case of IVUS images, the origin is taken at the image center
and the axis positively oriented (x-axis horizontally and y-axis vertically). Figure 1.3
shows an IVUS image in Cartesian coordinates on the left and in polar coordinates
on the right. Arrows in both images shows the correspondence for angles at 90o,
180o and 270o in each reference system. Notice that the transducer converts into
a straight line, as its center coincides with the center of the image. However, the
circular shape of the media-adventitia layer converts into an undulated structure due
to the distances of the border to the center of the image vary. Finally, the shadow of
the catheter guide wire is radial in cartesian coordinates, so that is vertical in polar
coordinates.
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Figure 1.3: IVUS image in Cartesian (left) and polar (right) coordinates

In the case that a body undergoes a rotation and then a dilation, its correspon-
dence in polar coordinates follows from the next proposition.

A rotation followed by an isotropic scaling (λ1 = λ2 = λ) corresponds to a trans-
lation of the angle and a radial scaling:

�
x̃
ỹ

�
=

�
cos θ − sin θ
sin θ cos θ

�
·
�

λ 0
0 λ

�
·
�

x
y

�
⇔

�
r̃ = λr
α̃ = α + θ

Figure 1.4: Conversion of a rotation in cartesian coordinates (left) to polar coordi-
nates (right)

Figure 1.4 sketches the conversion of a rotation at center (0, 0) from cartesian to
polar coordinates. The vector v is rotated by an angle θ in cartesian coordinates on
the left of the figure. The new vector v� (in dashed line) has the same modulus as v,
�v� =

�
x2 + y2 = �v�� =

�
(x�)2 + (y�)2, but x �= x� and y �= y�. The formal proof

can be found in proposition 1.5.1 in section 1.5.



20 THEORETICAL ISSUES

1.2 Fourier Transform

The Fourier transform is widely used in image processing due to its properties. In
particular, estimation of translation between two images is straightforward in terms
of Fourier phase.

A periodic function is a function which repeats its values (a given pattern) in
regular intervals. The interval of minimum length so that the pattern appears only
once is called period. The number of times that the pattern occurs is called fre-
quency. The basis of functions of period a (a-periodic) are the trigonometric functions
e

2πin
a = cos( 2πn

a ) + isin( 2πn
a ). Therefore, any a-periodic signal f ∈ L2([−a

2 , a
2 ]) can

be decomposed in this basis [75]:

f(x) =
∞�

n=−∞
�f, en� · en =

∞�

n=−∞
cnex in2π

a (1.5)

where

cn =
1
a

� a/2

−a/2
f(x)e−x in2π

a dx

The right term of equation (1.5) is called Fourier series and cn are called Fourier
coefficients. Even if f(x) is real-valued, the coefficients cn are complex numbers.

A complex number, k ∈ C, is determined by its module, |k|, and its argument,
arg(k):

k = |k| · e2πiarg(k) = |k| · (cos(2πarg(k)) + isin(2πarg(k)))

where

�
|k| =

�
Im(k)2 + Re(k)2

arg(k) = arctan
�

Im(k)
Re(k)

�

for Im(k) and Re(k) the imaginary and real parts of k, respectively. Such decomposi-
tion is related to the amplitude (A) and the phase (ρ) of a signal. If a signal f(x) ∈ C
of period 1

b has a single Fourier coefficient, k, f(x) can be written as:

f(x) = k · e2πibx = |k| · e2πiarg(k) · e2πibx = |k| · e2πib(x+ arg(k)
b )

and its amplitude and its phase are:

A(f(x)) = |k| ρ(f(x)) =
arg(k)

b

Figure 1.5 illustrates the amplitude and phase of the real part of two different
functions:

f1(x) = 3 · eix and f2(x) = 3 · ei(x+ π
2 )

Both functions have the same amplitude, A(f1(x)) = A(f2(x)) = 3, and the same
period, 2π. Meanwhile, their phase is different: ρ(f1(x)) = 0 and ρ(f2(x)) = π

2
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Figure 1.5: Phase and amplitude of a wave

In the case of a pure real function f(x) ∈ R, since the Fourier coefficients satisfy
that cn = c−n,

f(x) = cn · ex 2πin
a + c−n · e−x 2πin

a = cn · ex 2πin
a + cn · e−x 2πin

a

then, the amplitude and phase are:

A(f(x)) = 2 · |cn| ρ(f(x)) = arg(cn)

The set {e 2πin
a }n∈Z are an orthonormal basis of the space of functions square

integrables (L2( [−a
2 , a

2 ])). That is, functions such that:
� a

2

− a
2

|f(x)|2 dx < ∞

If a becomes greater and greater, (a →∞), it allows extending Fourier series to any
non-periodic function of L2(R). The continuous Fourier transform of f is the function
f̂ : R → C:

f̂(ω) =
� ∞

−∞
f(x)e−2πiωxdx

for ω the continuous Fourier frequency.
By their condition of basis, we can recover the original function, f(x) by means

of the inverse Fourier Transform:

f(x) =
� ∞

−∞
�f(ω)e2πiωxdω

The Fourier transform in Rn is a straightforward extension of the one-dimensional
Fourier transform [75]. In the particular 2-dimensional case (images), the Fourier
transform is:

f̂(ω1, ω2) =
� ∞

−∞

� ∞

−∞
f(x1, x2)e−2πi(ω1x1+ω2x2)dx1dx2
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1.2.1 Properties

For any pair of real integrable functions, we have the following properties (see propo-
sition 1.5.2 in section 1.5)

Linearity

The Fourier transformation of a linear combination of functions is a linear combination
of their Fourier transforms:

�(λf + µg) = λ �f + µ�g

It follows that one can treat each single signal composing a signal function separately
and then to add their Fourier transforms.

Convolution

The convolution between two functions is defined by:

(f ∗ g)(x) =
� ∞

−∞
f(t)g(x− t)dt

The output of a convolution describes the local behavior of an image. It follows that
this is a usual operation in many image processing tasks, such as, feature extraction,
image filtering or texture detection, to mention just a few. The convolution of a signal
with a filter simplifies in the Fourier domain to the product of their transforms.

�f ∗ g = �f · �g

On one hand, in the case of filters of large support, this operation is faster than
convolving in the spatial domain. On the other one, it constitutes a powerful tool to
design image filters depending on the frequencies one wants to keep.

Figure 1.6 illustrates image filtering design in the Fourier domain and its effect in
an IVUS frame. In this case, we apply a low-pass filtering only keeping low frequencies.
The first row shows IVUS frames in cartesian coordinates, original image in fig.1.6(a)
and the filtered one in fig.1.6(b). The second row shows the Fourier transforms of
the image (fig.1.6(c)) and the low-pass filter (fig.1.6(d)). In fig.1.6(a) we show the
original image, which is filtered in fig.1.6(b). The original image is transformed to
the frequency domain and shown in fig.1.6(c). Fig.1.6(d) shows the Gaussian of mean
µ = (0, 0) and width σ = 10:

g(µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

The product of the Gaussian and the image of the Fourier transform is transformed
back to the spatial domain to produce the filtered image in fig.1.6(b).
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(a) (b)

(c) (d)

Figure 1.6: Image filtering in the Fourier domain. IVUS image filtered by a gaussian
filter of σ = 10. Top plots are in the space domain: original image in fig.1.6(a) and
filtered image in fig.1.6(b). Meanwhile, bottom plots are in the frequency domain:
the Fourier Transform, FT , of the original image in fig.1.6(c) and a Gaussian of mean
µ = (0, 0) and width σ = 10 in fig.1.6(d).

Translation

If two functions differ in a pure translation (t) in the spatial domain, then their
Fourier transforms only differ in the phase (the amplitude remains unchanged). That
is, the phase of the ratio between the corresponding Fourier transforms of the original
functions results in a straight line which slope corresponds to the translation.

g(x) = (τtf)(x) = f(x− t) ⇒ �g(ω) = �f(ω)e−2πiωt

This property can be used to compute translation between images, which is the
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basis of the estimation of the in-plane motion given in chapter 2.

(a) (b)

(c) (d)

Figure 1.7: Shifted Functions. Original functions on the top row and their corre-
sponding Fourier transforms on the bottom row.

Figure 1.7 illustrates this property. The top plots correspond to two functions in
the spatial domain:

f1 = 10sin(x) + 5sin(3x) + cos(6x) + 2cos(26x) + sin(34x)

and

f2 = 10sin(x− π

2
)+5sin(3(x− π

2
))+cos(6(x− π

2
))+2cos(26(x− π

2
))+sin(34(x− π

2
))

The second function (fig.1.7(b)), is a translation of π
2 of the first function (fig.1.7),

f2(x) = f1(x − π
2 ). Plots on the second row correspond to the amplitude of Fourier

transforms (fig.1.7(c)) and the phase of the ratio between both functions (fig.1.7(d)).
Note that the slope of the phase is π

2 , which corresponds to the shift between both
functions in the spatial domain.

Scaling

The scaling of a function is related to its original function by an scaling in the fre-
quency domain.

g(x) = f(λx) ⇒ �g(ω) =
1
�λ�

�f(
ω

λ
)

1.2.2 Particular Cases of Fourier Transforms

Periodic Functions

As explained at the beginning of the section, the Fourier transform of a periodic signal
is a Fourier series. It follows that its spectrum identifies to the entire numbers, which
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is a discrete set. On the other side, the Fourier transform of non-periodic signals has
a continuous spectrum, that is, it identifies to the real line.

(a) (b)

(c) (d)

Figure 1.8: Fourier transforms of periodic and non-periodic functions. On the top
row, the original functions, periodic (a) and non-periodic (b). On the bottom row, the
corresponding Fourier transforms for the periodic function (c) and the non-periodic
one (d).

The functions in figure 1.8 illustrate this phenomenon. Top plots show the periodic
function,

f1 = 10sin(x) + 5sin(3x) + cos(6x) + 2cos(26x) + sin(34x)

on the left (fig.1.8(a)) and the same function with a non-periodic term,

f2 = x2 + 10sin(x) + 5sin(3x) + cos(6x) + 2cos(26x) + sin(34x)

on the right (fig.1.8(b)). Bottom plots show the amplitudes (given by absolute values)
of their Fourier transforms. Note that the five non-zero frequencies in the periodic
function are reflected as 5 clear peaks in its Fourier transform. Meanwhile, the values
of the Fourier transform of the non-periodic function cover the whole Fourier spectrum
and present an exponential decay.

Smooth Functions

Regardless of its discrete nature, which is given by the function periodicity, Fourier
spectra for functions infinitely differentiable (C∞) might be of compact (closed and
bounded subset) support or not. Compactness is independent of the discrete nature,
since there exist non-compact discrete sets (e.g. the natural numbers) as well as
compact non-discrete sets (e.g. the [0, 1] interval). In the case of a differentiable
function of compact support, its derivatives are integrable functions. This implies
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(proposition 1.5.3) that the Fourier transform of the derivatives exists and satisfies:

�f (k)(ω) = (2πiω)kf̂(ω)

Since �f (k)(ω) is integrable, �ωk��f̂(ω)� < ε for large values of ω. It follows
that �f̂(ω)� < ε

�ωk� and, since ωk is a polynomial, �f ∈ L1 has to be a function of
rapid decay. In practical terms, this implies that high frequency coefficients are small
enough to be neglected. That is, low-pass filters give a good approximation of this
kind of functions.

1.3 Anisotropic Restricted Operators

By their faint and inhomogeneous appearance, in order to detect vessel layers (spe-
cially adventitia), IVUS images should be filtered first. In this section, we explain
the mathematical formulation of a non-linear filtering operator able to preserve grey-
level along transitions between vessel layers without altering their shape. At the
same time, if the boundary conditions are changed, the differential operator is able
to restore smooth contours consistent with vessel layers geometry.

Solutions to the heat diffusion equation with initial condition a given image,
I0(x, y), provide a time (scale) dependant family, I(x, y, t), of smoothed versions of
I0(x, y). Heat diffusion is given in divergence form as:

It(x, y, t) = div(J∇I), I(x, y, 0) = I0(x, y) (1.6)

where ∇I = (Ix, Iy) is the image gradient, div is the divergence operator and J is a
2-dimensional symmetric (semi-) positive defined tensor that locally describes the way
grey level re-distributes. It follows that J diagonalizes in an orthonormal basis (see
section 1.1). Heat equation is thoroughly described by means of J eigenvectors (ξ,
η = ξ⊥) and eigenvalues (λ1,λ2), which describe the preferred diffusion directions of
the heat. Symmetric semi-positive defined tensors define a metric in Euclidean space.
The unitary vectors associated to the metric are an ellipse with axis of length λ1, λ2

oriented along ξ, ξ⊥. The shape of such ellipse also describes the preferred diffusion
of heat. In this sense, we can talk about isotropic diffusion (equal eigenvalues) and
anisotropic diffusion (distinct and strictly positive eigenvalues). By general theory
of partial differential equations [76], equation (1.6) has a unique solution provided
that λ1, λ2 do not vanish. However, in such case, I(x, y, t) converges to a constant
image [53], so that the diffusion time (iterations in numeric implementations) is a
critical issue for restoring an image preserving meaningful structures (termination
problem [77]).

In [57], it is shown that, for null eigenvalues, existence and uniqueness of solutions
to (1.6) is guaranteed as long as the eigenvector of positive eigenvalue defines a dif-
ferentiable curve. In this case, J represents the projection matrix onto the positive
eigenvector and diffusion restricts to its integral curves. Depending on the boundary
conditions equation (1.6) models a smoothing process (Neumann conditions) or an
extension one (Dirichlet).
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1.3.1 Structure-Preserving Diffusion

The second moment matrix [78] or Structure Tensor [79] provides a good description
of local image structures. The Structure Tensor tensor matrix, STρ,σ describes the
gradient distribution in a local neighborhood of each pixel by averaging the projection
matrices onto the image gradient:

STρ,σ = g(ρ) ∗
��

Ix(σ)
Iy(σ)

�
(Ix(σ), Iy(σ))

�
=

�
g(ρ) ∗ I2

x(σ) g(ρ) ∗ Ix(σ)Iy(σ)
g(ρ) ∗ Ix(σ)Iy(σ) g(ρ) ∗ I2

y (σ)

�

Image derivatives are computed using gaussian kernels, gσ, of variance σ (differenti-
ation scale):

Ix(σ) = g(σ)x ∗ I and Iy(σ) = g(σ)y ∗ I

The projection matrix onto the image gradient, ∇I = (Ix(σ), Iy(σ)) is averaged using
a gaussian of variance ρ (integration scale). Since ST (ρ, σ) is the solution to the heat
equation with initial condition the projection matrix, its eigenvectors are differentiable
(smooth) vector fields that represent image level sets normal (principal eigenvector,
ξ) and tangent (secondary eigenvector, ξ⊥) spaces. In the absence of corners (like
anatomical contours in bottom right image in fig.1.9), the vector ξ⊥ is oriented along
image consistent contours (in the sense of regular differentiable curves [80]). At tex-
tured or noisy regions, ξ⊥ is randomly distributed (upper right image in fig.1.9).

The Structure-Preserving Diffusion (SPD) is given by:

It = div(QΛQt∇I), I(x, y, 0) = I0(x, y) (1.7)

with:
Q =

�
ξ⊥, ξ

�
and Λ =

�
1 0
0 0

�

for ξ the principal eigenvector of ST (ρ, σ). By ξ⊥ distribution (fig.1.9), SPD smoothes
image grey values along regular structures (bottom right image in fig.1.9) and per-
forms like a gaussian filter at textured and noisy regions (upper right image in fig.1.9).
Its geometric nature makes the restricted diffusion evolution equation converge to a
non trivial image that preserves the original image main features as curves of uniform
gray level [57]. In this manner, SPD output achieves a uniform response to local image
descriptors suitable for a further detection and segmentation of image (anatomical)
regions.

Let us illustrate the benefits of SPD in medical imaging processing by applying it
to cardiac Magnetic Resonance (MR) images of the left ventricle in short axis (SA) and
long axis (LA) views. Fig.1.10 shows grey-level images and region segmentation for
LA (top rows) and SA (bottom rows) views for, from left to right, non-processed, SPD,
anisotropic filtering [53] and median filtering [81]. We have segmented three regions:
blood (shown in white), myocardial walls (shown in grey) and background (shown
in black). In original views (left columns) magnetic noise miss-classifies some pixels
(identified as background) at myocardial regions. Miss-classifications still remain in
anisotropic views (third column). SPD (second column) and median (forth column)
filters solve this problem, but median views over-classify them, while myocardial walls
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Figure 1.9: Vector field representing level curves of an angiography for a vessel
(bottom-right image) and a background structure-less area (upper-right image).

maintain its shape on SPD views. Regarding blood, in original images of LA views we
can notice a thin dark line corresponding to a valve, which is detected in SPD view,
almost detected in anisotropic view and suspected in median view. We can notice
the same effect in SA views for the thin dark line embedding the right ventricle (on
the left side of the images) and the trabeculae on the left ventricle, which are over
detected in anisotropic view and miss-detected in median view.

1.3.2 Anisotropic Contour Closing

If boundary conditions of equation (1.6) are changed to Dirichlet [76], the process
governed by the equation results in a functional extension process. Such processes
can be used to complete unconnected contours [58] as follows.

Let γ0 be the set of points to connect, χγ0 its characteristic function (a mask)
and J̃ the metric defined in equation (1.7). Then, the extension process, named
Anisotropic Contour Closing (ACC):

It = div(J̃∇I) with I|γ0 = χγ0 =
�

1, if the pixel belongs to γ0;
0, otherwise. (1.8)

converges to a closed model of γ. Intuitively, we are integrating the vector field ξ, that
is, we are interpolating the unconnected curve segments along it. This fact endows
ACC with two main advantages over other closing techniques, such as snakes [82].
First, the use of a restricted heat equation (1.8) ensures convergence to a closed
model of the unconnected curve, whatever its concavity is. Second, because ξ takes
into account image level sets geometry, ACC closures are more accurate than other
interpolating techniques (such as geodesic snakes [82]) which, at most, yield piece-wise
linear models.
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Figure 1.10: Performance of smoothing approaches on cardiac magnetic resonance
images.

In order to avoid wrong continuations at noisy areas, the vector ξ is weighted by
the coherence of the Structure Tensor. This quantity measures the vector regularity
and is given by:

coh =
(λ1 − λ2)2

(λ1 + λ2)2

for λ1 ≥ λ2, STρ,σ eigenvalues. At regions where ξ is a continuous vector, λ2 is close
to zero, so coh is maximum, meanwhile, at noisy areas, since ξ is randomly oriented,
λ1 compares to λ2 and coh ∼ 0.

The vector guiding ACC is defined by:

ξ = coh ξ̃ (1.9)

for ξ̃ the minimum eigenvalue of the Structure Tensor STρ,σ

Figure 1.11 illustrates the performance of ACC on an image of a human brain
(fig.1.11(a)). Contours detected using a Canny edge detector are shown in fig.1.11(b).
The unconnected contours which should be completed are better shown in the zoom of
fig.1.11(c). The mask shown in fig.1.11(d) corresponds to the characteristic function
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(a) (d)

(b) (e)

(c) (f)

Figure 1.11: Anisotropic Contour Closing

obtained from the extension process (equation (1.8)). Finally, in fig.1.11(e) we show
the image ridges of mask yielding the ACC closure. The close-up of figure 1.11(f)
shows the completeness of contours and their agreement to the original geometry of
the brain folds.

1.4 B-snakes

The amount of images involved in an IVUS sequence suggests searching for a contour
representation as compact as possible. This motivates guiding a parametric B-snake
towards ACC closure to obtain a compact smooth explicit representation.

A parametric snake is a curve γ(u) = (x(u), y(u)) which, under the influence of
an external force, Eext, and internal constrains, Eint, models a target curve γτ by
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minimizing the energy functional:

E(γ) =
�

γ
(Eint(γ) + Eext(γ, γτ ))du

=
�

γ
(
1
2
α�γ̇�2 +

1
2
β�γ̈�2 + Eext(γ, γτ ))du (1.10)

=
�

F (γ, γ̇, γ̈)du

The external energy, Eext, is an external potential achieving a minimum on γτ , which
faithfully preserves the target curve. The internal energy, Eint, preserves the conti-
nuity and smoothness of γ, weighted by α, β ∈ [0, 1].

The minimum of (1.10) is found by canceling the first derivative of E given by the
Euler-Lagrange equation [76]:

Fγ − du(Fγ̇) + duu(Fγ̈) = 0

where du and duu correspond to the first and second derivatives, respectively, of the
function F . This equation leads to solving the following system of 2 equations:

�
−αxuu + βxuuuu + ∂Eext

∂x = 0
−αyuu + βyuuuu + ∂Eext

∂y = 0

In the discrete case the curve γ is defined by a sampling of n points (x1, . . . , xn, y1, . . . , yn)
so that the energy functional (1.10) converts to:

E =
n�

i=1

Eint(i) +
n�

i=1

Eext(i)

The corresponding Euler-Lagrange equations are a system of 2n equations which can
be written in matrix form: �

Ax = −∂Eext
∂x

Ay = −∂Eext
∂y

(1.11)

where A is a penta-diagonal matrix called the stiffness matrix and expressed by:




2α + 6β −α− 4β β 0 0 0 . . . β −α− 4β
−α− 4β 2α + 6β −α− 4β β 0 0 . . . 0 β

β −α− 4β 2α + 6β −α− 4β β 0 0 . . . 0
0 β −α− 4β 2α + 6β −α− 4β β 0 . . . 0
...

...
...

...
...

...
...

...
...

−α− 4β β 0 0 . . . 0 β −α− 4β 2α + 6β





The system (1.11) is solved iteratively by writing it as:
�

(A + δI)x = δx− ∂Eext
∂x

(A + δI)y = δy − ∂Eext
∂y
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for any scalar δ. Thus we have:
�

x = (A + δI)−1(δx− ∂Eext
∂x )

y = (A + δI)−1(δy − ∂Eext
∂y )

So that, the iterative scheme is given by:
�

xt+1 = (A + δI)−1(δxt − ∂Eext
∂x )

yt+1 = (A + δI)−1(δyt − ∂Eext
∂y )

1.5 Proofs

This section is devoted to mathematically prove some assumptions about polar coor-
dinates transforms and Fourier development made along the chapter.

Proposition 1.5.1 The points
�

x̃
ỹ

�
=

�
cos θ − sin θ
sin θ cos θ

�
·
�

λ1 0
0 λ2

�
·
�

x
y

�

of a body undergoing a rotation of angle θ followed by a dilation of factor λ = (λ1, λ2)
in Cartesian coordinates, in polar coordinates corresponds to:

�
r̃ =

�
(λ1x)2 + (λ2y)2

α̃ = atan
�

λ2y
λ1x

�
+ θ

(1.12)

Proof By applying (1.12) to equations of (x�, y�) we obtain the following:

r2 = x�2 + y�2 = (λxxcosθ − λyysinθ)2 + (λxxsinθ + λyycosθ)2

= (λxx)2 + (λyy)2

So, r =
�

(λxx)2 + (λyy)2

The same steps for the angle:

tan(α) =
sin(α)
cos(α)

=
ỹ

x̃

sin(α)
cos(α)

=
λxxsin(θ) + λyycos(θ)
λxxcos(θ)− λyysin(θ)

sin(α) · (λxxcos(θ)− λyysin(θ)) = cos(α) · (λxxsin(θ) + λyycos(θ))
λxx · (sin(α)cos(θ)− cos(α)sin(θ)) = λyy · (sin(α)sin(θ) + cos(α)cos(θ))

λxx · sin(α− θ) = λyy(cos(α− θ))

tan(α− θ) =
λyy

λxx

So, α = atan
�

λyy
λxx

�
+ θ �
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Proposition 1.5.2 Let f, g ∈ L1(R) be two functions. Then, they satisfy the follow-
ing properties:

1. Linearity. �(λf + µg) = λ �f + µ�g

2. Convolution. �f ∗ g = �f · �g

3. Translation. g(x) = (τzf)(x) = f(x− z) ⇒ �g(ω) = �f(ω)e−2πiωz

4. Scaling. g(x) = f(λx) ⇒ �g(ω) = 1
�λ�

�f(ω
λ )

Proof 1. �(λf + µg) = λf̂ + µĝ

�(λf + µg)(ω) =
� ∞

−∞
(λf(x) + µg(x))e−2πiωxdx

= λ

� ∞

−∞
f(x)e−2πiωxdx + µ

� ∞

−∞
g(x)e−2πiωxdx

= λf̂ + µĝ

2. �f ∗ g = �f · �g

�f ∗ g(x) =
� ∞

−∞
(f ∗ g)(x)e−2πiωxdx

=
� ∞

−∞

� ∞

−∞
f(t)g(x− t)dte−2πiωxdx

=
� ∞

−∞

� ∞

−∞
f(t)g(x− t)e−2πiωx+2πiωt−2πiωtdxdt

=
� ∞

−∞

� ∞

−∞
f(t)g(x− t)e−2πiω(x−t)e−2πiωtdxdt

=
� ∞

−∞
f(t)e−2πiωtdt

� ∞

−∞
g(y)e−2πiω(y)dy

= �f · �g

3. If g(x) = (τzf)(x) = f(x− z), then ĝ(ω) = f̂(ω)e−2πiωz

ĝ(ω) =
� ∞

−∞
g(x)e−2πiωxdx =

� ∞

−∞
f(x− z)e−2πiωxdx

=
� ∞

−∞
f(x− z)e−2πiωze−2πiω(x−z)dx = e−2πiωz

� ∞

−∞
f(x− z)e−2πiω(x−z)dx

= e−2πiωz f̂(ω)
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4. If g(x) = f(λx), then ĝ(ω) = 1
�λ� f̂(ω

λ )

ĝ(ω) =
� ∞

−∞
g(x)e−2πiωxdx =

� ∞

−∞
f(λx)e−2πiωxdx =

� ∞

−∞

1
λ

f(y)e−2πi ω
λ ydy

=
1
�λ�

� ∞

−∞
f(y)e−2πi ω

λ ydy =
1
�λ� f̂

�ω

λ

�

�

Proposition 1.5.3 If f, f �, f ��, · · · , f (k) ∈ L1(R) then, �f (k)(ω) = (2πiω)kf̂(ω)

Proof Integrating by parts we have:

�f �(ω) =
� ∞

−∞
f �(x)e−2πiωxdx =

�
f(x)e−2πiωx

�x→∞
x→−∞ + 2πiω

� ∞

−∞
f(x)e−2πiωxdx

By Cauchy theorem [80]and since f is integrable, the first term vanishes. By
induction we obtain �f (k)(ω) = (2πiω)kf̂(ω)

�



Chapter 2

Physics-based Models for Vessel

Dynamics Exploring

Tissue bio-mechanical properties (like strain and stress) are playing an increasing
role in diagnosis and long-term treatment of intravascular coronary diseases. Their
assessment strongly relies on estimation of vessel wall deformation. Since IntraVascu-
lar UltraSound (IVUS) sequences allow visualizing vessel morphology and reflect its
dynamics, this technique represents a useful tool for evaluation of tissue mechanical
properties.

Image misalignment introduced by vessel-catheter motion is a major artifact for
a proper tracking of tissue deformation. In the first section of this chapter, we assess
IVUS rigid in-plane motion due to heart beating. Motion parameters are computed
by considering both the vessel geometry and its appearance in the image. In the
case of IVUS sequences, due to its acquisition nature, different dynamic components
are reflected in these transformations, not only cardiac component. On one hand,
breathing forces a periodic displacement of arteries. On the other one, vessel geometry
(curvature and torsion) influences on the relative position between catheter and artery.
We decompose dynamics into geometric and motion components and identify the role
of each term.

On the other side, longitudinal motion artifacts in IVUS sequences hinders a
properly 3D reconstruction and vessel measurements. Most of current techniques
base on the ECG signal to obtain a gated pullback without the longitudinal artifact
by using a specific hardware or the ECG signal itself. The potential of IVUS images
processing for phase retrieval still remains little explored. In section 2.2, we present
an image-based approach for cardiac phase retrieval from coronary IVUS sequences
without ECG signal. Inspired on the fact that maximum and minimum lumen areas
are related to end-systole and end-diastole, our cardiac phase retrieval is based on the
evolution of physical quantities along the sequence and statistically explores which is
the best filter for extracting it.

Finally, the mathematical issues supporting some assumptions made along the
chapter are detailed in section 2.3.

35
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2.1 In-plane Dynamics

Different factors such as heart pumping, blood pressure or artery geometric properties
mainly contribute to the dynamics of coronary arteries [71, 21, 72]. The first order
approximation to vessel in-plane dynamics is given by a linear transformation com-
bining translation, rotation and scaling [73]. Dilation is inherent to the elasticity of
the vessel itself and it does not preserve the metric. The rigid part of this approxi-
mation can be modeled as a rigid body motion and is given by a rotation followed by
a translation.

In body dynamics, the point describing the object response to external forces and
torques is determined by means of its center of gravity or mass [83]. The difference
between its position and the origin of coordinates is identified to the object translation.
In this framework, the object motion is given by a rotation centered at its center of
mass, which position is identified to the object translation. If the center of mass of
the object at time zero is taken as origin, then the linear application mapping the
object at a given time to the object at time zero (section 1.1 of chapter 1) is given
by: �

x̃
ỹ

�
=

�
cos θ − sin θ
sin θ cos θ

�
·
�

x− t1
y − t2

�
(2.1)

for �t = (t1, t2) the position of the center of mass and θ the angle of rotation in radians.
Rigid motion parameters are computed by combining vessel geometry and appearance
as follows.

2.1.1 Translation

Since IVUS sequences are centered at the catheter (which coincides with the center
of the image), vessel translation is given by position of the center of gravity of the
vessel, namely V CM , at each frame.

Since grey level reflects tissue mass density due to IVUS images reconstruction,
the center of mass given by the image intensity, namely ICM , corresponds to the
physical center of gravity of the vessel. However, some acquisition devices allow inter-
active tuning of the image brightness in order to enhance tissue and vessel structures
appearance [84]. Such intensity gain is radial [85], and the image is made-up from
this tuning. Thus, tissue close to the catheter might look brighter and, for vessels
not centered at the catheter, intensity gainings might deviate the position of ICM
from the true center of mass. Vessel geometric center, namely GCM , coincides with
the vessel center of gravity only in the case of uniform tissue density. However, it
serves to compensate the deviation of ICM for non centered vessels. We define the
center of mass of the vessel, V CM , by a combination of ICM and GCM achieving
a good compromise between vessels whose intensity gain has been tuned and vessels
with uniform tissue density.

Image Center of Mass - ICM

Let I be an image of dimensions n×m and (i, j) be the pixel position in the image.
The center of mass of the image (ICM) is given by averaging image pixel positions
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weighted by their grey-value intensity:

ICM =

��n
i=1 i

�m
j=1 I(i, j)

�n
i=1

�m
j=1 I(i, j)

,

�m
j=1 j

�n
i=1 I(i, j)

�n
i=1

�m
j=1 I(i, j)

�

Geometric Center of Mass - GCM

The geometric center (GCM) of a set of N image points, (xk, yk)1≤k≤N , is computed
as the average of their positions:

GCM =
1
N

�
N�

k=1

xk,
N�

k=1

yk

�

In the case of IVUS sequences, the most reliable geometric center of the vessel is
the center of the transition between media and adventitia layers, since it is the vessel
structure which best preserves its shape, regardless of morphological changes. Thus,
the points chosen to compute the geometric center are a set roughly lying on this
transition (which is named adventitia for convenience). The strategy to extract these
points is an iterative algorithm based on a temporal analysis along the sequence [56].

1. Lumen Displacement Reduction. In polar coordinates with the origin at the
center of the image, the vessel appears as a straight band as far as it is centered
at the catheter. Any deviation between the vessel and the catheter results in
a undulate profile. The lumen displacement along the sequence converts into a
dynamic radial wave. Such wave is suppressed by transforming images to polar
coordinates with origin fixed at ICM . We name Ipol such polar images.

2. Negative Edge extraction. The points roughly lying on the adventitia are
extracted by means of negative horizontal edges, ey, of the polar images, Ipol.
Edges are computed by convolving Ipol with the y-partial derivative of a 2
dimensional gaussian kernel of variance ρ:

ey(i, j) = gy(i, j) ∗ Ipol(i, j)

for gy(i, j) = − j

2πρ4
e−(i2+j2)/(2∗ρ2)

3. Geometric Displacement Reduction: The impact of noise and artifacts is
minimized by considering the average of ey for a block of N sequence frames.
Vessel curvature displacement produces a blurring of the energy average at
curved angular sectors. The number of frames achieving the best compromise
between small artifacts removing and tissue blurring is approximately a third of
the heart cycle (10 frames in pull-backs at 30 frames per second). We select for
each angle (column) those points with the former average below the 5% radial
percentile. Spurious edges due to noise and other sparse artifacts (such as blood
scatter at branches) are removed by applying a length filtering to the extracted
edges that leaves only those connected components of a length above a given
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value. In order to endow further continuity to the selected segments, we use the
statistical distribution of their radial position along a block of images.

Percentiles computed in the sequence block of 100 frames serve to discard out-
liers by only considering points within the central percentile range. In order to
capture the adventitia curvature, percentiles are computed on angular sectors of
5 degrees. The final radial values serve to compute the new origin of our polar
transform.

The more straight the adventitia is, the more reliable the points selected are.
At the same time, the more reliable the geometric center is, the more straight the
adventitia is. Thus, steps 2 and 3 are repeated until convergence of the central
percentile. Finally, the set (xk, yk)k is obtained by transforming the radial and angular
coordinates of the above points in the polar image back to the cartesian domain.

(a) (b)

(c) (d)

Figure 2.1: Adventitia Straighten Procedure: polar image with origin at the image
mass center (a), edges in a sequence block (b), central percentile of edges positions
(c) and final polar image (d).

Figure 2.1 illustrates the main steps of the geometric eccentricity suppression.
Fig. 2.1(a) shows the polar transform with the origin at ICM . In fig.2.1(b) we
show the selected edges in a sequence block. Fig.2.1(c) shows the plot for their
central percentile. Steps shown in fig.2.1(b) and fig.2.1(c) are repeated until 25%
and 75% percentiles are close enough. The straighten adventitia image is shown in
fig.2.1(d). Figure 2.2 shows the points roughly lying on the adventitia layer used to
compute GCM for three representative cases: a centered vessel with hardly soft plaque
(fig.2.2(a)), a large vessel deviated from its center with calcium plaque (fig.2.2(b)) and
a vessel deviated with fibrotic plaque (fig.2.2(c)). Although the points detected on
the adventitia are not optimal, they suffice to compute its center.

Vessel Center of Mass - V CM

In those cases that the vessel wall is not centered at the catheter, the geometric center
of mass serves to correct the image center of mass. Let us consider the maximum,
Rmax, and minimum, Rmin, distances of the set (xk, yk)k to the image center:
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(a) (b) (c)

Figure 2.2: Detection of points roughly lying on the adventitia for different mor-
phologies with the corresponding geometric center. A centered vessel with hardly
soft plaque (a), a vessel not centered at the catheter with fibrotic plaque (b) and a
large vessel not centered at the catheter with calcium plaque (c).

Rmax = max
k

��
x2

k + y2
k

�
Rmin = min

k

��
x2

k + y2
k

�

and, denoted by DR, the vessel-catheter deviation rate given by:

DR =
Rmin

Rmax

Then, the vessel center of mass, V CM , is defined as:

V CM = DR · ICM + (1−DR) ·GCM (2.2)

Figure 2.3 shows the three different centers of mass for a vessel not centered at
the imaging catheter. In fig.2.3(a), ICM appears nearly centered in the image, but
not centered in the vessel. In fig.2.3(b), GCM is centered in the vessel, so it corrects
ICM to the final V CM in fig.2.3(c).

(a) (b) (c)

Figure 2.3: Center of gravity computations: ICM (a), GCM (b) and VCM (c).
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2.1.2 Rotation

Once vessel translation has been compensated, two global motions still remain: ro-
tation and radial scaling. According to (subsection 1.1.1), in the polar domain with
origin V CM , they convert into a horizontal translation (corresponding to rotation)
and a vertical scaling, (corresponding to radial scaling). Let I1, I2 be two consecutive
polar frames (with origin at V CM) of the sequence and let us assume an isometric
dilation. By proposition 1.5.1 they are related via:

I2(i, j) = I1(i + θ, λj)

where θ corresponds to the angle of rotation and λ to the dilation.
In the case of human coronary arteries, scaling is very close to 1 [86], so λ = 1 + ε

becomes a perturbation of identity given by ε. Furthermore, we restrict computations
to a band around the media-adventitia layer, given by j = j0 + ∆j. By Taylor’s
formula [80], it follows that the first order approximation to I2 is given by:

I2(i, j) = I1(i + θ, j + εj) ∼ I1(i + θ, j) + εj∂jI1(i + θ, j)
= I1(i + θ,∆j + j0) + εj∂jI1(i + θ, j)

for ∂j denoting the partial derivative with respect to the second variable.
Since t and j0 are constant shifts, the first order approximation to I2 can be

computed by applying the Fourier transform [87] and using phase correlation [88].
Let �I1, �I2 be the Fourier transforms of I1, I2 and let us assume that they differ in a
pure translation:

I2(i, j) = I1(i− t1, j − t2) [= I1(i + θ,∆j + j0)]

then their Fourier transforms are related (proposition 1.5.2) via:

�I2(ω) = �I1(ω)e−i�ω,t�

for ω = (ω1, ω2) the Fourier frequency, �t = (t1, t2) and �ω,�t� = ω1t1 + ω2t2 the
Euclidean scalar product.

If we consider the phase, ρ(ω), of the ratio between the two Fourier transforms [89],
we have that:

ρ(ω) = ρ

�
�I2(ω)
�I1(ω)

�
= ρ

�
e−i�ω,t�

�
= �ω, t� = ω1t1 + ω2t2

so that the points (ω1, ω2, ρ(ω)) lie on a plane, Π, with the slopes given by the trans-
lation:

Π : ρ(ω) = t1ω1 + t2ω2

In practice, noise and texture introduce a scatter in the set (ω1, ω2, ρ(ω)), es-
pecially for those frequencies with smaller amplitudes. We reduce noise-scatter by
only considering those frequencies common to both images with an associated ampli-
tude larger than a given percentile. Such frequencies with the phase ρ yield a point
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Figure 2.4: Regression plane approximating Fourier phase correlation between two
shifted images.

cloud, like the one shown in figure 2.4, which regression plane provides a least-square
estimator of the plane Π.

The first slope of the regression plane estimates the angle of rotation between two
consecutive frames. Since polar coordinates cover 360 degrees, rotation angles are
given in the range [−π, π] ≡ [−180o, 180o]. This range covers all possible rotational
motions because a rotation angle is determined modulus 2kπ radians due to such a
rotation does not affect the appearance of the image/structure undergoing it. The
rotation of each image at time k with respect to a reference frame at time 1 is com-
puted by accumulating all frame-to-frame rotation angles. That is, let θk−1,k be the
rotation angle between two consecutive frames at times k−1 and k, then the rotation
angle aligning the k-th frame to a first one is given by:

θk :=
j=k�

j=1

θj−1,j (2.3)

The reliability of the rotation angle is related to the regression plane fitting error
(residuals). Large residuals indicate a poor linear dependency between frequency and
phase. In this cases, the estimated parameter does not properly approach the rotation
angle and should be discarded. Since polar images are 360 pixels wide, anomalous
cases are detected by a mean fitting error over 1 (degree/pixel). Such angles constitute
less than 6.43% of the data analyzed and their values are interpolated along the
sequence using the preserved angles.

For a detailed explanation of the mathematical argumentations supporting the
assumptions made in our estimation of the rotation angle, the reader can have a look
at section 2.3.
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2.1.3 Dynamics Decomposition

The rigid motion that cardiac vessels undergo is a complex dynamical process which
results from the combination of several contributions. In general, it presents a ge-
ometric component related to the artery 3D shape and a dynamic one induced by
breathing and cardiac movements [7]. Depending on the particular problem to ap-
proach, each of the terms should have specific treatment. Exploring artery geometry
might be derived by analyzing the geometric component [90], whereas extraction of
cardiac dynamics concerns the cardiac dynamical contribution [16]. In the case of
vessel biomechanics analysis, the goal is to produce a static model allowing a better
tissue tracking along the segment. Firstly, the reader should note that, without fur-
ther analysis, the geometric component does not reach a reliable 3D representation of
the vessel geometry, which might lead to wrong static models. Secondly, even if one
could infer the true 3D geometry from it, by compensating vessel tortuosity there is
no guarantee of a better alignment of vessel plaque. This suggests only correcting the
dynamical terms of the translation and rotation for stabilizing the sequence. In order
to allow a complete comprehension of vessel dynamics, this subsection is devoted to
provide the mathematical tools for decoupling each of the terms.

The translation and rotation parameters are functions of the time s. If the geo-
metric term of a motion parameter is denoted by the subindex g, the cardiac term,
induced by heart beating, is denoted by the subindex c and breathing contributions
are denoted by the subindex b, the angle and translation decompose into:

t(s) = tg(s) + tb(s) + tc(s) (2.4)
θ(s) = θg(s) + θb(s) + θc(s)

Focusing on the Fourier series of these components, breathing and cardiac terms
are periodic and, thus, have a discrete Fourier spectrum, whereas geometry has a
broad-band (non-discrete) spectrum [87]. As usual, Fourier transforms are indicated
by a hat ( ˆ ) over functions. Principal harmonics have been learned by supervised
classification of the spectrum of a training set of 30 patients without apparent lesions
used in a study for assessment of myocardial perfusion in contrast angiography [91].
Confidence intervals of the 95% yield the expected ranges for the principal frequency
of each of the periodic components. For breathing it is (10, 45) repetitions per minute
(rpm), while for cardiac motion it is (45, 200) rpm. Each term in (2.4) is approached
as follows.

Geometric Component

Since the artery length is finite, the geometric component is a function of compact
support and, thus, the derivatives of the geometric component are integrable func-
tions. By proposition 1.5.3, f̂g is a function of rapid decay, so that, high frequency
coefficients are small enough to be neglected [86].

The geometric term is approximated with the low-frequency spectrum of the signal
(low-pass filter [92]). Although part of the geometric component is categorized into the
cardiac and breathing components, the range 1-10 rpm has (experimentally) proved
to be a good approximation. Thus, the geometric term is enclosed by frequencies
between 1 and 10 rpm.
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Breathing Component

The study reported in [91] indicates that, in spite of being periodic, breathing can
be defined by the whole spectrum in the interval (10,45) rpm. The ranges reported
in [91] were obtained from a study on patients without apparent lesions performed in
our laboratory for assessment of myocardial perfusion in contrast angiography [91].
The frequency range was learned by supervised classification of the spectrum of a
training set of 30 patients. For each patient three different sequences were recorded:

• A sequence without contrast injection and the patient normally breathing in
order to learn diaphragm movements and background noise

• A sequence with contrast injection and the patient holding breathing for learning
the frequency range of heart beating and myocardial staining.

• A test sequence with contrast injection and the patient normally breathing.

The values of the local mean for all sequence frames provides each pixel with
a function, namely LM, that describes the average contrast absorbed by the tissue
along time. Such signal is the contribution of four main phenomena: breathing, heart
beating, myocardial dyeing and noise. The amplitudes of the spectrum of the LM
patterns define a probability density function (pdf) in the frequency domain, which
we modeled with a mixture of Gaussians [93]. The Bayes classifier for the four classes
gave the frequency ranges for the physiological phenomena reported in the article.
We note that ranges coincide with clinical evidence: a living human does not breath
more than 45 times per minute and its heart does not beat more than 200 times per
minute.

Cardiac Component

Finally, cardiac motion principal harmonic, ωc, is defined as the first local maximum
in Iωc = (45, 200) rpm and the term is approximated by the first 10 harmonics,
(kωc)k=1:10. For the sake of an efficient algorithm, ωc is approximated by the global
maximum of Fourier transform amplitude for frequencies in the range Iωc.

It follows that the motion terms of a sequence lasting NSec seconds are given by:

tg(s) =
1
T

�

Ig

�t(ω)eiωsdω θg(s) =
1
T

�

Ig

�θ(ω)eiωsdω

tb(s) =
1
T

�

Ib

�t(ω)eiωsdω θb(s) =
1
T

�

Ib

�θ(ω)eiωsdω (2.5)

tc(s) =
1
T

k=10�

k=1

�t(kωc)eikωcs θc(s) =
1
T

k=10�

k=1

�θ(kωc)eikωcs

where the period T = NSec/60 is the sequence length (in minutes) and defines the
domains of integration as Ig = (−10T, 10T ) and Ib = (−45T,−10T ) ∪ (10T, 45T ).

Since, even in healthy cases, the heart rate varies along the pullback, the peaks
in the Fourier series are spread around the theoretic harmonic frequencies. The more
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irregularities in periodicity are, the more spread around the theoretic harmonic the
Fourier development is. The harmonics less corrupted by noise are obtained by optical
filtering [94]. The technique, widely used in electron crystallography, selects Fourier
peaks by thresholding the difference between the amplitude achieved at the harmonic
and an average of neighboring amplitudes. Harmonics selected by optical filtering are
the only contributions to the sums in (2.5).

Figure 2.5: Motion Decomposition. Rotation angle and its Fourier decomposition
on the left; geometric, breathing and cardiac terms on the right.

Figure 2.5 shows the Fourier terms decoupling for the rotation angle in the top left
plot. Vertical lines in the Fourier spectrum of the signal (bottom left plot) indicate
the ranges defined for the 3 phenomena. Dots mark the 10 cardiac harmonics and
squares the ones selected after optical filtering. The 3 components of the angle are
shown in right plots.

2.2 Longitudinal Dynamics

The first step for modeling longitudinal motion in IVUS sequences is retrieving cardiac
phase information. Following the general scheme shown in figure 2.6, our image-based
algorithm to approach ECG sampling splits in three steps:

1. Extraction of Signal Reflecting Cardiac Motion: By the physical coupling
[21], luminal area evolution is synchronized to other vessel cardiac phenomena,
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Figure 2.6: Pipeline for Image-based Cardiac Phase Retrieval

such as tissue motion or rigid motion. We propose using the latter two to
retrieve a signal reflecting motion.

(a) Tissue Motion: Due to the ultrasound properties, image intensity reflects
the density of mass and, thus, changes along the sequence either come
from morphological changes or contain information about cardiac phase.
The evolution of the image Local Mean (LM) for each pixel along the
sequence is a 1-dimensional signal, which profile is a combination of the
morpho-geometric arterial changes and the periodic variation due to heart
beat. Vessel motion is not reflected in the whole vessel section, but only
at some salient areas such as plaque or vessel walls. In order to minimize
the impact of these image areas we only analyze LM from those pixels
reflecting motion by an optical filtering on �LM which selects them.

(b) Rigid Motion: Since rigid in-plane motion comes from artery motion due
to heart pumping, the rotation motion profile (θ) computed in section 2.1
also gives information about the cardiac phase.

2. Signal Filtering for Cardiac Profile Extraction: In general, the signals re-
flecting cardiac motion are a combination of morpho-geometric arterial changes
and arterial dynamics (including heart beat and breathing). Furthermore, car-
diac phase is not constant along the sequence. This suggests that the profile
reflecting cardiac motion should be filtered. Following the literature, we use a
band-pass filter in order to control the regularity of the signal.

3. Cardiac Phase Retrieval: Minimums and maximums of the filtered signals
retrieve cardiac phase at end-systole and diastole.

The extraction of the cardiac frequency, ωc, is necessary for the first two steps.
We define ωc like in the subsection 2.1.3 [91], as the most prominent local maximum
in the interval Iωc = (45, 200) repetitions per minute of the Fourier development
of either LM or θ. In the case of LM signals, this process provides a ωc for each
image pixel and the average of all ωc for a uniform sample of pixels constitutes our
approximation to cardiac frequency.

2.2.1 Step 1 - Extraction of Signal Reflecting Cardiac Motion

1. Tissue Motion

We compute LM in sliding windows of size (empirically set) 9×9 pixels. Since cardiac
motion is a periodic signal, �LM for those pixels reflecting motion should be as close
to a discrete series (given by ωc multiples) as possible. Other dynamic phenomena,
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such as breathing, morphological changes along the sequence and irregularities in
heart beat distort the ideal discrete profile. In particular, the theoretic harmonic
peaks result in a set of peaks spread around ωc harmonics. The more irregular the
profile is, the more spread around the theoretic harmonic the harmonics of �LM are.
We consider that points reflecting cardiac motion are those points which its �LM has
a well-defined harmonic frequencies profile and, at the same time, �LM has a large
amplitude at ωc.

From the initial uniform sampling of pixels, only those points with cardiac ampli-
tude over the 80% percentile of all �LM amplitudes are considered (figure 2.7). This

Figure 2.7: First Selection of pixels reflecting motion along the sequence

set will be noted by MP. There might be pixels with a large amplitude but an ir-
regular profile, so that they do not reflect cardiac motion as figure 2.8 shows. Top
plots correspond to a pixel reflecting motion while bottom plots correspond to a pixel
not reflecting motion. Note the erratic pattern of the last. We remove those pixels
with a signal corrupted by noise by means of an optical filtering [94] centered at the
principal harmonic ωc. Optical filtering selects only those Fourier relevant peaks by
thresholding the difference between the amplitude achieved at the harmonic and an
average of neighboring amplitudes. The signals reflecting cardiac motion are given by
the optical filtering of LM signals computed in the set MP. Figure 2.9 shows the set
of pixels lastly selected. Finally, we extract a single signal by averaging all signals for
selected pixels.

2. Rigid Motion

The rotation angle of the IVUS sequences is due to heart pumping and motion, among
other factors (see section 2.1). The process explained in subsection 2.1.3 for extracting
the rotation motion profile can be used for extracting the cardiac phase. Although
θ is a global score which is prone to be influenced by random motion of background
pixels, its computation reduces the impact of random motion by optical filtering.
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Figure 2.8: Regular Profile (on top) versus irregular profile (on bottom)

Figure 2.9: Final selection of points reflecting cardiac motion

2.2.2 Step 2 - Signal Filtering for Cardiac Profile Extraction

Even in healthy subjects, cardiac frequency does not keep constant along the sequence,
which introduces (among other phenomena) irregularities in the Fourier transform of
the cardiac motion profile. Such irregularities corrupt the location of local extrema
and, thus, the signal reflecting motion should be filtered. We model the extraction
of cardiac phase by filtering the cardiac profile with a bandpass filter. We use two
families of filters: Butterworth (B) [16] and Gaussian-based (g) [17]. Both of them
are centered at the cardiac frequency ωc.

The Butterworth filter is defined as follows:
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B(ω) =
1�

1 +
�

|ω|−ωc

0.6∆ωc

�2n

where n is related to the filter decay and ∆ω = δωc to its support. Figure 2.10 shows

Figure 2.10: Butterworth filters for different parameters

Butterworth filters centered at ωc = 76.5 rep/min for four different parameters set,
P1 = {n = 1; δ = 0.001} in blue, P2 = {n = 4; δ = 0.1} in green, P3 = {n = 2; δ = 0.1}
in lilac, and P4 = {n = 1; δ = 0.1} in red. The last three filters have equal support
with δ = 0.1 (including low frequencies) but decreasing decays. P4 has the less
decay, so, low frequencies of the signal would remain. P3 reduces the impact of low
frequencies and P2 almost suppress them. Concerning P1, although it has equal decay
than P4, it is the most located around ωc as δ is the lowest one.

The Gaussian filter is defined as follows:

Figure 2.11: Gaussian filters for different parameters



2.2. Longitudinal Dynamics 49

g(ω, σ) =
1

σ
√

2π
e−(|ω|−ωc)

2/(2σ2)

In the case of a Gaussian-based filter, the decay cannot be handled (it is always
exponential) and only its support might be tuned by its deviation σ. Figure 2.11
shows Gaussian filters centered at ωc = 76.5 rep/min for three different deviations:
σ1 = 0.1 in blue, σ2 = 1.5 in green, and σ3 = 0.1 in red. We note that the filter with
σ1 is the most localized around ωc, while the one with σ3 is the most permissive with
low frequencies.

Figure 2.12: Signal filtering with a Butterworth filter with parameters
n = 2; δ = 0.1

Figure 2.12 shows a signal obtained in Step 1 by the tissue motion approach
filtered by a Butterworth filter with parameters n = 8, δ = 0.1. In the top left image,
we present the original filter. The Fourier transform is computed and shown in the
bottom left image. The result of the product between its Fourier transform and the
filter is shown in the bottom right image. The final result is shown in the top right
image.

Finally, the real part of the inverse Fourier transform of the filtered cardiac profile
is a smooth signal for the cardiac phase retrieval. Regardless of the filter used we will
denote it by Filt.

2.2.3 Step 3 - Retrieval of Cardiac Phase

Maximums and minimums of the filtered signal give a sampling at end-systole and end-
diastole and, thus, retrieve cardiac phase for each selected pixel. Extrema positions
are computed in the Fourier domain using the equation (proposition 1.5.3)

�f � = 2πiωf̂

for speeding up the process, since f̂ has already been computed in step 2.
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2.3 Mathematical Issues

As we explained in section 2.1, in the polar domain with origin CM , the remaining
affine transformations (rotation and scaling) convert into a horizontal translation
(rotation) and a vertical scaling (scaling). In general, the latter would invalidate
any computation of the angular translation by means of Fourier analysis and linear
regression. In this section we detail the mathematical arguments that support the
assumptions made in section 2.1.

In the case of human coronary arteries, scaling is very close to 1 [86], so λ = 1 + ε
becomes a perturbation of identity given by ε. Furthermore, we restrict computations
to a band around the media-adventitia layer, given by j = j0 + ∆j. By Taylor’s
formula, it follows that the first order approximation to I2 is given by:

I2(i, j) = I1(i+t, j+εj) = I1(i+t, j)+εj∂jI1(i+t, j) = I1(i+t,∆j+j0)+εj∂jI1(i+t, j)

for ∂j denoting the partial derivative with respect to the second variable. Since t and
j0 are constant shifts, it follows that the first order approximation is a perturbation
of a pure translation which can be written as:

I2 = I1(i + t1, j + t2) + εj∂jI1(i + t, j) (2.6)

for t1 = t, t2 = j0 and the second independent variable j = ∆j. We claim that
(2.6) only introduces a small (negligible) perturbation in the point cloud generated
by (ω1, ω2, ρ(ω)) not dropping regression accuracy. If we consider the ratio between
the Fourier transforms of I1 and I2, we have that:

�I2

�I1

= ei�ω,t� + ε
�j∂jI1

�I1

and that the phase ρ is given by:

ρ

�
�I2

�I1

�
= Imag

�
log

�
ei�ω,t� + ε

�j∂jI1

�I1

��

for Imag{·} denoting the imaginary part of a complex number and log the com-
plex logarithm. Developing again by Taylor, the first order approach to the above
logarithm in a neighborhood of ε = 0 is given by:

log

�
ei�ω,t� + ε

�j∂jI1

�I1

�
= log(ei�ω,t�) + εe−i�ω,t�

�j∂jI1

�I1

= i�ω, t�+ εe−i�ω,t�
�j∂jI1

�I1

Therefore, the points (ω1, ω2, ρ(ω)) lye on a plane perturbed by:

ρ(ω) = t1ω1 + t2ω2 + εImag

�
e−i�ω,t�

�j∂jI1

�I1

�

Figure 2.13 illustrates the impact of the perturbation, ε, in the shape of the point
cloud given by (ω1, ω2, ρ(ω)) and the coefficients of the regression plane (reported
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in the top boxes). We show the point cloud in the case of a pure rotation (given
by θ = 12) without scaling and the point cloud perturbed by a scaling equal to
1 + ε = 1.01 (central plots) and 1 + ε = 1.045 (bottom plots). The non-perturbed
point clouds are in circles, while the perturbed ones are in crosses. Two different
morphologies have been considered (see images in most top row): a calcified segment
(left) and a soft plaque one (right). We observe that the impact of a perturbation ε
is either negligible (in the sense that accuracy in regression coefficients is small) as
shown in figure 2.13 (central plots) or it results in a random regression plane (fig.
2.13 (bottom plots)).

Figure 2.13: Comparison between point clouds given by (ω1, ω2, ρ(ω)) in the case
of a pure rotation (circles) and a rotation perturbed by a scaling (crosses) for two
different morphologies, calcium (left) and soft plaque (right). The perturbation on
the central plots is ε = 0.01 while ε = 0.045 corresponds to the perturbation on the
bottom plots.
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The dependency between perturbation and error in translation (first slope of re-
gression plane) is illustrated in the plot in figure 2.14, which shows the error of per-
turbations for the image shown in the top of the first column of figure 2.13. We note
that, in this case, ε = 0.025 (dotted vertical line) is the bound for sub-pixel accuracy
(left close-up) in angular translation error and perturbations above ε = 0.025 return a
random regression plane with an arbitrary error in the estimated angular translation.

Figure 2.14: Relation between perturbation and error in translation.

We claim that for human coronary arteries, the scaling between two consecutive
frames of sequences acquired at 30 fps (which is our digitalization rate) does not reach
the critical perturbation of identity. That is, let rsys and rdias denote the arterial radii
at end systole and diastole, respectively. Assuming a uniform radial scaling (given by
λ) along the cycle, we have that:

rsys = λNFrrdias (2.7)

for NFr the number of frames per systolic cycle. In devices at 30 frames/sec., the
average cardiac cycle length in adults is about 24 frames (75 beats per minute). Since
systole approximately constitutes 40% of the cardiac cycle [95], we have that:

rsys ≈ λ10rdias (2.8)

Radial deformation of cardiac arteries mainly depends on blood pressure and vessel
wall elastic properties. By Hooke’s law, the radial increment, ∆r, is proportional to
the gradient of blood pressure, ∇P , via the relation [71,21]:

∆r = (κ∇P/π)1/2

where κ is the elasticity coefficient of the coronary artery. Standard values κ =
(0.010±0.020)mm/mmHg and ∇P ≈ 40 mmHg yield that the systole-diastole radial
increment is ∆r ≈ 0.35 mm [96]. Taking into account that the radii of coronary
segments [97] are in the range r = 2.64± 0.3 mm, we have that, in average, equation
(2.3) equals:

rsys = rdias + ∆r ≈ 2.64 + 0.35 = 2.99 ≈ λ102.64
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which gives an average scaling between consecutive frames of λ = 1.0125, and, thus,
a perturbation ε = 0.0125.

We have computed the error in translation for ε = 0.0125 in a set of images rep-
resentative of the different vessel morphologies extracted from in vivo pullbacks. The
corresponding error range is 1.09±0.67. We conclude that, in most cases, the pertur-
bation induced by artery radial scaling does not significantly affect the computation
of the angular rotation.
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Chapter 3

Deterministic-Statistical Strategies

for Structures Exploring

Vessel plaque assessment by analysis of IntraVascular UltraSound sequences is a use-
ful tool for cardiac disease diagnosis and intervention. Manual detection of luminal
(inner) and medial-adventitial (external) vessel borders is the main activity of physi-
cians in the process of lumen narrowing (plaque) quantification. Difficult definition
of vessel border descriptors, as well as, shades, artifacts, and blurred signal response
due to ultrasound physical properties trouble automated adventitia segmentation. In
order to efficiently approach such a complex problem, in this chapter we propose com-
bining deterministic tools and statistical classification techniques into a vessel border
modeling strategy. By the challenge of the problem, we focus on the detection of the
medial-adventitial border.

3.1 General Strategy

The strategy for media-adventitia (simply adventitia from now on) segmentation we
suggest summarizes in the following three main steps:

STEP I - IMAGE PREPROCESSING

The preprocessing step splits into :

A. Polar Transformation of IVUS images

Advanced techniques for medical imaging segmentation [98] use a priori knowl-
edge of the target structure shape. Active shape contours [99] are the usual way
to incorporate such knowledge to the model. In the case of the adventitia bor-
der, its circular appearance can be imposed by simply transforming images to
polar coordinates with the origin at the geometric center of the vessel border. In
this coordinate system, the adventitia transforms into a horizontal curve, which
significantly simplifies border feature extraction.

55
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B. Image Filtering IVUS images are particularly noisy, as well as, in most of
cases, adventitia appears as a very weak contour. In order to enhance significant
structures while removing noise and textured tissue, it is necessary filtering. We
propose two different approaches.

1. Structure-Preserving Diffusion (SPD)

This diffusion [57], detailed in subsection 1.3.1, modifies classic anisotropic
ones [100, 53] by suppressing any diffusion across image level curves. The
associated image operator homogenizes image structures grey values ac-
cording to their geometric continuity and, thus, results in a more uniform
response to image local descriptors (edges, valleys, ridges).

2. Sequence Stabilization

After rigid motion compensation (see section 2.1), image pixel intensity,
which is related to tissue density of mass, remains more uniform along
frames. It follows that the mean of stabilized sequence blocks enhances
vessel structures, while blurring texture and speckle.

STEP II - STATISTICAL SELECTION OF BORDER POINTS

The goal of our classification stage is to compute two binary images (masks), one for
vessel borders segments and another for calcium sectors. Extracting vessel borders
and calcium points requires defining the functions that best characterize each set, as
well as, their most discriminating values. We learn, both, feature space and parametric
threshold values by applying supervised classification techniques to a training set of
manually segmented images.

A. Feature Space Design
Our feature space is designed to discriminate among the set adventitia/intima,
calcium and fibrous tissue. Calcium discrimination is needed to discard angular
sectors of ambiguous information and fibrous tissue to avoid miss detections of
vessel borders. By the polar coordinate system chosen, horizontal edges are the
main descriptors of the set adventitia/intima. Image simple statistics (standard
deviation and cumulative means) serve to formulate the functions characterizing
calcium and fibrous plaque.

B. Extraction Parameters
In a segmentation procedure there are two kind of parameters, those that best
discriminate among different structures in the feature space and those acting
as a filter of fake responses. Discriminating parameters are values acting as
a threshold on the feature space, while filtering parameters remove spurious
detections from the extracted segments. Both parameters are chosen and tuned
to yield an optimal segmentation for a training set of manually traced borders.

STEP III - SEGMENTATION STAGE

The selection stage produces two binary images: adventitia/intima points and cal-
cium sectors. Vessel border segments are modeled by computing an implicit closed
representation and, then, an explicit snake representation using B-splines.
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A. Implicit Anisotropic Contour Closing (ACC)
For the implicit closing we suggest using an Anisotropic Contour Closing [58]
based on functional extension principles to complete curve segments in the im-
age mask domain. The use of restricted diffusion operators enables to take
into account image geometry and discard calcium and side branches sectors.
Since ACC interpolates line segments along image level curves, the implicit
reconstruction provides with a faithful closed model of vessel borders. We en-
dow 3-dimensional continuity to such implicit reconstruction by topological area
considerations.

B. Explicit B-Snakes Representation
We define vessel contours at branching and calcified segments by interpolating
ACC radial values in the polar domain with a B-spline snake. B-snakes yield
a smooth representation encoded with N control points and conforming to the
completion mechanisms of human vision [101]. In the cartesian domain the
final smooth model yields an elliptical shape at sectors where no information is
available.

3.2 Step 1 - Image Preprocessing

3.2.1 Polar Coordinates

In an IVUS plane, the media-adventitia border is an elliptic-like shape with a relatively
small eccentricity (fig. 3.1(a)). In polar coordinates with the origin at the geometric
center of the vessel, the adventitia converts into a nearly horizontal line that can
be parameterized by the radius. The geometric center does not coincide with the

(a) (b)

Figure 3.1: Adventitia images in cartesian (a) and polar coordinates (b).

ultrasound probe (image center) and has to be computed. Its computation it is
widely explained in chapter 2 and can be split in three main steps:

1. Lumen displacement reduction: In polar coordinates, adventitia is a straight
line in the measure that the origin of coordinates is placed at its geometric cen-
ter (figure 3.2). Any deviation from its geometric center results in an undulation
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in its pattern. One source of deviation is lumen displacement due to heart dy-
namics. The impact of lumen displacement is reduced by taking as origin the
image center of mass ICM .

2. Negative edges extraction: Negative horizontal edges provide points roughly
lying on the adventitia. The geometric center of these points approximates the
vessel geometric center.

3. Geometric displacement reduction: Displacement due to vessel curvature
is reduced by transforming images to polar coordinates with origin the new
geometric center computed in step 2.

Steps 2 and 3 are repeated until convergence.

Figure 3.2: Scheme of the strategy for approaching the geometric center of mass

Figure 3.2 shows the three main steps for extracting the points roughly lying on
the media-adventitia layer (upper side of the image) and the final result of the image
in polar coordinates with the geometric center of mass as origin. For an exhaustive
explanation see chapter 2.

From now on, we will work with images in polar coordinates. We will note
AdvPol(i, j) the discrete polar transform of an IVUS frame, for the radius, i, and
the angle, j, given by:

i = 1, . . . ,min(Nc,Nr) and j = 1, . . . , 360

where Nc, Nr are the dimensions (columns and rows) of the original IVUS image.

3.2.2 Image Filtering

1. Structure-Preserving Diffusion

We apply the Structure-Preserving Diffusion (SPD) described in subsection 1.3.1
with smoothing parameters set to (σ, ρ) = (0.5, 2). One drawback of SPD
smoothing is the computational cost since it is an iterative process. In order
to increase its computational efficiency, SPD is applied in a band of interest
containing the adventitia layer. This strategy reduces 50% the computation
time. The band is automatically defined by the minimum and maximum of the
central percentile of pixels used for computing the geometric center. Figure 3.3
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shows an original IVUS image in polar coordinates (fig.3.3(a)), the same image
filtered in a band by SPD (fig.3.3(a)) and its Sobel edges (fig.3.3(c)).

(a)

(b)

(c)

Figure 3.3: Image SPD Filtering. Polar transformation (a), the SPD image (b) and
edges computed by Sobel detector (c)

2. Sequence Stabilization The method explained in section 2.1 has the potential
clinical application of tracking continuous vessel structures, such as vessel walls.
Stabilized sequences preserve the local density of mass of structures along time
in the measure that morphology remains unchanged along the sequence. It
follows that the mean of a small number of frames enhances structures, and
blurs texture and speckle. In order to achieve a good compromise between
morphologic changes and a minimum of frames for blurring non-structure areas,
we take blocks of 10 frames. Although the result of this filtering process is
less accurate than the one given by SPD, the computational cost of SPD is
significantly lower than SPD filtering. Figure 3.4 shows an image filtered by
computing the mean over 10 frames (fig.3.4(a)) and its Sobel edges (fig.3.4(b)).

Note that Sobel edges shown in figures 3.3 and 3.4 give continuous profiles of the
adventitia for both image filtering methods.

3.3 Step 2 - Statistical Selection of Border Points

The inner and outer vessel borders appearance is so similar that they are assumed
to constitute a single class in the training process. Their distinct radial position
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(a)

(b)

Figure 3.4: Stabilized Sequence Filtering. Image filtered by the mean of a block of
stabilized sequences (a), and edges computed by Sobel detector (b)

suffices to discriminate them [50] in the absence of echo opaque structures, such as
calcium. In such cases, the adventitia does not appear and the detection is misled
towards the intima. Since the best solution is to discard echo opaque sectors, the
training stage also addresses their characterization. We also include fibrous tissue
discrimination because it is a main artifact confusing with the adventitia that forces
the use of longitudinal cuts [50]. For the sake of simplicity, echo opaque structures
will often be referred to as calcium.

3.3.1 Feature Space Design

Based on visual perception, we mainly distinguish adventitia/intima by horizontal
edges and echo opaque structures by their shadow underneath. Let AdvPol and (i, j)
be the image in polar coordinates and their pixel position respectively. The feature
space we propose is a three dimensional space tuned to describe the adventitia/intima
set and echo opaque structures.

1. Horizontal Edges

Since in the coordinate system chosen, the adventitia layer is a horizontal dark
line, horizontal edges constitute our main descriptor (see chapter 2 for their
definition).

The only image structures yielding large values for ey are intima, adventitia,
calcium and fibrous tissue. Intima and adventitia correspond to negative values,
while calcium and fibrous structures yield a negative and a positive response,
one for each of their bordering sides.

The descriptors we have chosen to detect echo opaque plaques and fibrous tissue
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are their outstanding brightness and, for calcium, the dark shadow underneath.
We propose the following particular functions to quantify such features.

2. Radial Standard Deviation
Striking brightness corresponds to an outlier of the pixel grey value in the radial
distribution. We measure it by means of the difference between the pixel gray
value and the radial mean. For each pixel (i, j), we define it as

σ(i, j) = (AdvPol(i, j)− ν(θ))2

where ν(θ)) is the radial (i.e. column-wise) mean of the polar image:

ν(θ) =
1

Rmax

Rmax�

i=1

AdvPol(i, θ)

The magnitude of σ is maximum at bright structures (calcium and fibrous
plaque) and minimum near the adventitia. In order to distinguish between
calcium and fibrous plaque, we add the following shadows detector:

3. Cumulative Radial Mean
For each angle j consider the following cumulative mean:

CSj(i) =
�n=i

n=Rmax
AdvPol(n, j)

Rmax − i

For angles with calcium, the function CSj(i) presents a step-wise profile in
contrast to a more uniform response in the presence of fibrous plaque. It follows
that the total energy:

ecs(j) =
i=Rmax�

i=1

CSj(i)

achieves its minimum values only at angles with calcium.

The feature space achieving a maximum separability for our training set is given
by:

(X,Y, Z) = (ey, sign(ey)
�
|eyσ|, ecs) (3.1)

Figure 3.5 shows the feature space for a calcified (1st column) and normal (2nd
column) cross-sections. The original images are in the first row, energy from the
first derivative in vertical direction in the second row, Radial Standard Deviation
in the third and Cumulative Radial mean in the fourth row. From ey energy im-
ages (fig.3.5(b),(f)) we extract negative horizontal edges. Radial Standard Deviation
(fig.3.5(c),(g)) shows a maximum in calcium sectors (fig.3.5(c)),and fibrous plaques
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 3.5: Image descriptors. Original images (a),(e) and Vessel Structures De-
scriptors: Horizontal Edges (b),(f), Radial Standard Deviation (c),(g) and Cumula-
tive Radial Mean (d),(h).

(fig.3.5(g)) and finally, Cumulative Radial Mean (fig.3.5(d),(h)) shows a minimum
in calcium sectors (last columns in fig.3.5(d)) and angles with lack of information
(middle columns in fig.3.5(h)).

3.3.2 Statistical Parameter Setting

For the computation of the vessel borders and calcium binary images, the classification
problem we must face is discriminating among 4 different sets: adventitia/intima
(Adv), calcium (Cal), fibrous structures (Fbr) and the rest of pixels (RP). Instead of
addressing the 4-class problem as a whole, we will solve several 2-class problems in 2
dimensions.

For its simplicity and proven efficient performance, Fisher linear discriminant anal-
ysis [93] serves to reduce dimensionality of the feature spaces. Linear Discriminant
Analysis searches for the linear subspace, W , that achieves a maximum separability
among the projected classes. In the case of Fisher, separability is measured in terms of
maximum separation between class means and minimum within-class scatter. Mathe-
matically, this criterion is formulated in terms of the ratio between the between-class,
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SB , and the within-class, SW , scatter matrices:

SB =
�c

i=1(µi − µ)(µi − µ)t

SW =
�c

i=1

�Ni

j=1(Yj − µi)(Yj − µi)t

for c the number of classes, Ni the samples per class, µi the mean vector of each of
them and µ the mean of all samples (Yj). Fisher discriminant criterion reduces to
finding the subspace, W , maximizing:

J(W) =
|WtSBW|
|WtSW W|

Because SB encodes the projection onto the linear subspace given by µ1, . . . , µc, it has,
at most, rank c− 1, which bounds W dimension by dim W ≤ c− 1. In the particular
case of a 2-class problem in 2 dimensions, Fisher space is a straight line (solid line
in fig.3.6(a)) and discrimination between the two classes is achieved by a threshold
on the projection space (line labeled τPF1 in fig.3.6(b)), which induces a splitting of
the feature space in two half planes. We will use a Bayesian approach [93] to select
thresholding values in terms of miss classification errors. In the two class problem, the
classic Bayesian strategy searches for the value that achieves a suitable compromise
between the percentage of false positives and false negatives. The approach selects
a threshold in terms of how many true positives are detected without considering
the amount of noise introduced in the positive detections. Although the criterion
is widely used in classification problems, in the case of severe unbalanced classes or
object segmentation [102] it is more efficient to select thresholds in terms of the trade-
off between precision and recall. Precision is defined as the data retrieved and relevant
over all the data retrieved, while recall is the data retrieved and relevant over all the
data relevant as the following formulas show:

PRECISION =
|TP |

|TP + FP | RECALL =
|TP |

|TP + FN |
In probabilistic terms, precision is the probability that an object is relevant, given

that it is retrieved, that is, an estimate of the conditional probability P (C1|R). Recall
corresponds to the probability that a relevant object is retrieved, that is, an estimate
of the conditional probability P (R|C1). Following the usual set-up in information
retrieval, we define a decision rule in terms of our given observation vector X, to
determine which data is classified as C1 (the acceptance criterion). In this case the
cost function is the following:

α1P1(FN) + α2P2(FP )

This is the strategy we propose for the computation of the Adv and Cal mask
images.

A. Vessel Borders Mask

Borders extraction is achieved by addressing 2 classification issues: discriminate
C1=(Adv,RP) and C2=(Cal, Fbr) in the (X,Y ) plane and, then, separate Adv from
RP using X values.
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(a) (b)

Figure 3.6: Adventitia/Intima vs Calcium/Fibrous Tissue sets Discrimination. Fea-
ture Space (a) and discrimination on the Fisher Projection Line (b)

We remind that Adv, Cal and Fbr are the only tissues yielding large response
for X values. It follows that the clustering proposed (C1, C2) ensures that after
discriminating between Adv and RP, the set classified as Adv will not include any
other structures but vessel borders. This avoids the use of longitudinal cuts [50] to
distinguish between intima and adventitia, since they are directly identified by their
radius.

We discriminate C1 (positives) and C2 (negatives) by projecting onto the Fisher
space, PF1, (see fig.3.6(a)). Since our discriminating problem is detecting as much
points on the adventitia as possible, we tune the standard Bayesian threshold in order
to achieve a maximum number of true C1 detections regardless of false positives (see
fig.3.6(b)). Such miss classifications are discarded in the subsequent discriminating
and filtering steps. Among all thresholds ensuring at least 90% of true C1 detections,
we choose the value, τPF1, that, in combination with the rest of parameters, yields
optimal segmentation results. Figure 3.6 summarizes the main steps of the discrim-
ination between C1 and C2. Figure 3.6(a) shows the feature space chosen and the
Fisher projection line. Figure 3.6(b) the projected classes onto PF1 and a threshold
discriminating line τPF1.

Discrimination between Adv and RP is achieved in the X coordinate domain, as
Adv corresponds to large negative values. Large range of Adv values among different
patients, suggests the use of an image sensitive threshold rather than a common value
for all cases. We adopt a strategy in the fashion of discriminant snakes [55], [103]
and select a different value for each column. Radial (column-wise) percentiles (ρX)
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are used to compute such threshold. Finally, small structures in the vessel borders
image can be removed by applying either a length or an area filtering. Although a
length filtering is more flexible some 3D continuity might be lost. In contrast, an area
filtering is fixed for all frames but takes into account 3D continuity. In our case, we
use a length filtering, so that only segments of length above a given percentile (ρF )
are kept.

If we note by PF1 the projection of the (X,Y ) space onto the Fisher line, then,
for every frame, points are labeled as Adv if they fulfill:

PF1 < τPF1, X < ρX

and their segment length is above ρF .
Figure 3.7 illustrates the extraction of adventitia/intima points. In fig.3.7(a) we

have the output of the discrimination step and in fig.3.7(b) the result after applying
a length filtering.

(a) (b)

Figure 3.7: Vessel Borders Point Extraction (1). Adventitia mask resulting from
the classification (a) and the final one after length filtering (b)

B. Calcium Mask

The feature space chosen to discriminate calcium from fibrous tissue is given by the
projection PF1 and the Z coordinate. A threshold on the Fisher space, PF2, for the
2D space (PF1, Z) separates Cal and Fbr. Instead of following a Bayesian approach
we consider precision-recall curves (as the one in figure 3.8) to select thresholding
values, as we can not run the risk of identifying too much Fbr and artifacts (noise)
as calcium.

As in the computation of the vessel borders mask, we tune thresholding values
and among all thresholds admitting, at most, a 10% of noise , we choose the value,
namely τPF2, that ensures a better segmentation of our training set.

It follows that, calcium points are those pixels that satisfy:

PF1 ≥ τPF1 and PF2 > τPF2

Figure 3.9 shows the points classified as calcium in white.
The thresholding parameters (τPF1, ρX , ρF and τPF2) hinge on the ultrasonic

acquisition device characteristics. The specific values used in our experiments are
given in section 5.3.
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Figure 3.8: Precision-Recall curve to select thresholding values for the computation
of calcium mask

Figure 3.9: Vessel Borders Point Extraction (2). Calcium mask

3.4 Step 3 - Closing Stage

The selection stage produces two mask (binary) images: one for calcium and another
one for vessel borders. In the case of non circular patterns (caused by either catheter
tilting or vascular modeling in eccentric plaques), the adventitia mask might result in a
sparse collection of fragmented curve segments which omits the most curved sectors of
the border. In order to correctly restore the vessel geometry, while recovering a smooth
representation, we close the adventitia layer in two steps. First we complete them
in the mask image domain by an interpolation process based on extension principles.
Then, an explicit snake is used to compute a B-spline model of the adventitia.

3.4.1 Anisotropic Contour Closing

We recall that ACC is defined by:

It = div(QΛQt∇I) with I|γ0 = χγ0 =
�

1, if the pixel belongs to γ0;
0, otherwise.

for
Q =

�
ξ⊥, ξ

�
, Λ =

�
1 0
0 0

�

and γ0 the set of points of the adventitia layer to connect. The vector ξ is the vector
guiding ACC and is the eigenvector of minimum eigenvalue of the Structure Tensor,
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STρ,σ, computed over the edge map ey. ACC is implemented using the numeric quick
approximation given in section 3.5.2.

The main artifacts to obtain a reliable closed model are side branches, sensor
shadows and calcium sectors. In order to avoid wrong continuations at side branches
and sensor shadows, ξ is weighted by the coherence of the Structure Tensor:

ξ̃ = coh ξ (3.2)

where
coh =

(λ1 − λ2)2

(λ1 + λ2)2

for λ1 ≥ λ2, STρ,σ eigenvalues. Concerning calcium sectors, since ξ is well-defined,
we modify the weight of (3.2) by a function wξ, so that it cancels at calcium sectors.
Therefore, the vector guiding ACC is:

ξ̃ = wξξ

and wξ(i, j) =
�

0, if (i, j) ∈ Calcium
coh, otherwise

for ξ the minimum eigenvalue of the Structure Tensor STρ,σ

Finally, in order to endow 3D continuity to the final model, we apply a morpho-
logical opening (area filtering) of the surface given by blocks of N consecutive ACC
closings.

3.4.2 B-snakes

Although ACC closure already contains all available information, by the discrete
implementation used, the implicit model is an irregular step-wise model that still
presents gaps at side branches and calcium sectors. Besides, the amount of images
involved in the sequence suggests searching for a contour representation as compact
as possible. This motivates guiding a parametric B-snake towards ACC closure to
obtain a compact smooth explicit representation. The general iterative process given
in section 1.4 significantly simplifies in our particular case.

In polar coordinates, as the adventitia is convex, we have that γ(s) = (θ(s), R(s))
can be represented as a function of the angle, γ = γθ = (θ,R(θ)). It follows that the
functional (1.10) simplifies to:

E(R(θ)) =
� 360

0
Eint(Rθ, Rθθ) + Eext(R,Rτ )dθ (3.3)

=
� 360

0
(α�Rθ�2 + β�Rθθ�2 + (R−Rτ )2)dθ

for Rτ the radius of the target curve and Rθ, Rθθ the first and second derivatives
of the radius. We parameterize R by a B-Spline given by N control points (Ri, θi)
where θi = 360i

N , i = 1, . . . , N . Given that θi are uniformly spaced, θ(s) =
�

i ci(s)θi

is a linear coordinate change in the angular domain with the parameter relation
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dθ = θsds = λds, for λ a constant. It follows that the energy functional (3.3) converts
to a function of the N control points:

E(R1, . . . , RN ) =
� N−1

0

�
λ−1Rs

�2 +
�
λ−2Rss

�2 + (R(s)−Rτ (s))2λds

for the B-spline radius given by:

R(θ(s)) = R(s) =
�

i

ci(s)Ri, for s ∈ [0, N − 1] (3.4)

Since we seek for the control points Ri, i = 1, . . . , N that minimize the former
energy, they must satisfy the system:

∂E

∂Rj
= 0, ∀i ∈ {1, . . . , N}

The jth equation is:

�
2
λ2

� �

i

��
ċj ċi

�
Ri +

�
2
λ4

� �

i

��
c̈j c̈i

�
Ri +

�

i

��
cjci

�
Ri =

�
cjRτ

It follows that the system of equations (3.4) can be written in matrix form as:

(B1 + B2 + B0)R = BR = Fτ (3.5)

where the entries of Bj are sums of the jth derivatives of the spline coefficients ci. The
term (B1 + B2) corresponds to the stiffness matrix for B-splines snakes and B0 is the
extra term coming from our particular external energy. The forces Fτ induced by the
target curve are computed via the parameter change Rτ (θ(s)), for θ(s) =

�
i ci(s)θi.

Equation (3.5) can be either solved iteratively (gradient descent of the energy
(3.4)) or, since Fτ does not depend on R, given by the matrix inversion,

R = B−1Fτ

In the first case, the initial snake should be the maximum radius of all points of the
ACC mask. In case of using the explicit solution, the target radius is defined, for each
angle, as the maximum radius along the i-essim column corresponding to such angle.
The cartesian transform of the polar spline given by the above radial control points
is our final adventitia model.

Figure 3.10 shows the whole adventitia closing process. The adventitia mask
(fig.3.10(a)) obtained from the classification stage is first closed with ACC (fig.3.10(b))
and finally approached with a B-snake (fig.3.10(c)). the green curve in (fig.3.10(c)) is
the final snake one would obtain from the initial snake in red.

3.5 Numerical Issues

In this section we address the numerical issues involved is the computation of the
adventitia border segmentation.
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(a)

(b)

(c)

Figure 3.10: Adventitia Closing Step. Adventitia mask (a), ACC closing (b) and
final snake (c).

3.5.1 Parameters Tuning

Filtering parameters remove spurious fake detections from the discrimination stage.
There are two main candidates to act as filtering parameters of the vessel borders
masks, length filtering and area filtering. An exhaustive study determines which is
the best set of parameters achieving an optimal segmentation of manually traced
borders. By collecting all the parameters controlling the segmentation algorithm,
we obtain an error function of 4 variables, E(τPF1, ρX , ρF , τPF2). The best way of
setting the parameters achieving an optimal segmentation is seeking out the global
minimum of E. For the sake of a reduction in the computational time required in
the training stage, we adopt the following strategy. First, we note that the only
way to obtain a global minimum of the function E is by an exhaustive search in its
parameter space (τPF1, ρX , ρF , τPF2), as we lack of an analytic expression for the
cost error function. On one hand, we have to choose the thresholds for vessel borders
mask, τPF1, ρX , ρF . For τPF1, we have to choose it among all thresholds ensuring
at least 90% of true C1 detections, so τPF1 is a sample of thresholds that ensures
this percentage of detections. ρX is a radial percentile used to compute an image
sensitive threshold for discriminating between adventitia points and the rest of the
pixels classified by τPF1, so ρX is a sample of percentiles. Finally, we have to decide
between an area filtering or a length filtering and choose the number of pixels as area
or the percentile as length, so ρF divides in ρA and ρL and they convert in variables.
On the other hand, we have to choose the threshold for calcium mask, τPF2 among all
thresholds that ensure at most a 10% of noise, so τPF2 is another sample of thresholds.
In this way, for every set of values τ j

PF1, ρ
j
X , ρj

F , τ j
PF2, we obtain a value of our error
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function. It follows that we need the computation of the whole process for every set of
frames, increasing the computational cost of our study. For the moment, in this work
and after a little study of a few patients, we have heuristically fixed ρX at 6% and the
samples of τPF1 and τPF2 at 3 different values. We perform the filtering parameter
learning by analyzing the mean and maximum absolute segmentation errors for a
training set of 12 vessel segments which are representative of all kinds of plaques and
vessel morphologies. The different samples are:

ρA = {90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210}
ρL = {77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88}

for each combination (τPF1, τPF2) of the thresholding parameters, obtaining a
different function of ρA as an area filtering and ρL as a length filtering. These com-
binations of thresholding parameters are:

Adv0Cal1 = (0.0567,−0.1241)
Adv0Cal2 = (0.0567,−0.1468)
Adv0Cal3 = (0.0567,−0.1295)
Adv1Cal1 = (0.0578,−0.1241)
Adv1Cal2 = (0.0578,−0.1468)
Adv1Cal3 = (0.0578,−0.1295)
Adv2Cal1 = (0.0619,−0.1241)
Adv2Cal2 = (0.0619,−0.1468)
Adv2Cal3 = (0.0619,−0.1295)

Figures 3.11 and 3.12 show the different error functions, maximum absolute error
functions (fig.3.11) and mean absolute error function (fig.3.12), both for area and
length filtering parameters. Each curve corresponds to a combination (τPF1, τPF2)
with area or length filtering parameters as a variable. As we can see, both minimum
of error functions correspond to the combination Adv0Cal1 and the length filtering
parameter ρL = 85%, obtaining the following results.

3.5.2 Quick ACC

For the sake of a computational cost as small as possible, the following quick algorithm
for solving equation (1.8) is used. First recall that the final image yielded by ACC
is a mask (i.e. 1’s and 0’s) of the closed curve and that the whole process might be
regarded as integrating the field ξ. Recall that we seek for solutions to the following
extension problem:

div(J̃∇I) = 0 with I|γ0 = χγ0

For a better understanding, we refer to heat equation 1.6. Let us consider the image
I as a mass distribution. The vector field �j = J̃∇I locally describes the direction
towards the initial mass moves. On one hand, concerning the final heat distribution,
steady states of (1.6) can be described by means of their level sets. On the other
hand, in the basis {ξ, ξ⊥}, J̃∇I develops as:

J̃∇I = λ1�∇I, ξ�ξ + λ2�∇u, ξ⊥�ξ⊥ = �∇I, ξ�ξ
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Figure 3.11: Maximum Absolute Error function for Length and Area Filtering
Parameters

so, if we denote by Ω the region enclosed by a level curve γ then, �j = �ξ,∇u�ξ is
tangent to γ. It follows that the Divergence formula yields that the evolution of It

fulfils: �

Ω
It =

�

Ω
div(j) =

�

γ
��j, ξ�

Since our initial mask γ0 belongs to a level curve and the effect of the diffusion
redistributes the mass along it, we have that, for each border point of a segment, the
next pixel to be set to 1 is the neighbor in the direction ξ (cross in fig.3.13(b)). Such
pixel achieves the maximum correlation between ξ and the gradient of the distance
map to the uncomplete curve (dot in fig.3.13(c)). In this way the whole closing process
is of the order of the gap (pixel) size.

Figure 3.13 illustrates the grounds of the quick algorithm: For an unconnected
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Figure 3.12: Mean Absolute Error function for Length and Area Filtering Param-
eters

(a) (b)

Figure 3.13: Quick Anisotropic Contour Closing.

segment, fig.3.13(a) shows the vector to be integrated and fig.3.13(b) the distance
map gradient used to compute ACC.



Chapter 4

Validation Protocols

An objective evaluation of any technique is a crucial step for ensuring its clinical
applicability as reliable as possible. This chapter is devoted to explain the validation
protocol designs used for each contribution.

4.1 In-plane Dynamics

Once the rigid in-plane motion of the artery is compensated, it is necessary to know
which level of stabilization has been achieved. In real pullbacks there is no objective
error measure indicating the amount of motion suppressed, since motion parameters
are unknown. In most cases, quality measures are either subjective measures, based on
the visual appearance of sequences and longitudinal cuts [12], [65] or rely on extraction
of vessel properties (such as strain in [22]). Since that important issue deserves special
attention, subsection 4.1.1 is devoted to report a quality score, the Conservation of
Density Rate (CDR), for validation of motion compensation in in vivo pullbacks.
Synthetic experiments serve to validate the proposed score as measure of motion
parameters accuracy and compute the accuracy of the motion parameters estimation.
In vivo pullbacks serve to show the reliability of the presented methodologies in clinical
cases.

4.1.1 Conservation of Density Rate

In order to obtain an objective measure of the amount of motion suppressed two main
issues should be addressed. Firstly, a similarity measure quantifying image changes
along the sequence should be defined. The evaluation of the similarity measure on
sequences before and after motion compensation provides two motion scores. A second
stage concerns defining a criterion for comparing such scores.

Usual similarity measures (such as normalized mutual information [104] or nor-
malized cross-correlation [81]) yield scalar values based on image intensity (overall)
differences. Since they reach an extreme value for aligned images, they are successfully
applied to motion detection [105, 22]. In the case of assessing motion compensation
in IVUS sequences, they present two main limitations:

73
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• Computation is sensitive to image digital quality. In the case of intensity-
based metrics (cross-correlation, sum of square differences...) texture and speckle
might decrease their accuracy and force a previous image filtering [105]. In the
case of probabilistic approaches (e.g. normalized mutual information) values are
substantially affected by the number and distribution of histogram bins, which
depend on grey-values range and resolution.

• They provide a global estimation of the alignment rate. Usual similarity
measures are scalar scores computed, at most, over a region of interest. However,
vessel motion is not visually noticed at all image pixels but only at some salient
areas, such as calcium transitions or adventitia points of extreme curvature.
This motivates adopting a local approach and tracking image motion for each
pixel. Although cross-correlation and sum-of-square-differences support reliable
computation in small neighborhoods (compared to information measures, which
need a minimum number of samples for a reliable computation [104]), they are
highly affected by image backscatter [105]. Thus, for small sets of pixels, their
values might be (random) quantities due to noise.

Regarding the comparison criterion for motion scores computed before and after
compensation, it should be noticed that:

• Extreme values are influenced by the anatomic and morphological
differences along the vessel segment. After motion correction, vessel dis-
placement has disappeared, but morphological changes still remain. That is,
even in the best case, comparison of aligned images along the sequence is prone
to be a non-constant function depending on the particular morpho-geometric
changes of the vessel segment. We claim that, in order to properly quantify
vessel alignment, only the dynamic components should be taken into account.

By the above considerations, both, the similarity measure and the comparison cri-
terion, should discard image areas where motion is not observed. Otherwise the score
is prone to detect a random motion (due to dark areas, blood, and other artifacts)
rather than the true vessel motion. Although the alignment is global, these facts
lead to considering a local approach for the definition of both quantities and only use
values computed for those pixels which contribute relevant information about global
alignment.

Inspired on strategies of classic fluid mechanics [70], we propose exploring the
conservation of a physical quantity along the sequence. In particular, we use the
local density of mass as it might be approximated by the image local mean, LM (see
subsection 2.2.1). As in chapter 2, the LM values for all images provide a pixel-wise
function describing the conservation of the local density of mass along the sequence.

Concerning comparison before and after motion compensation, we propose com-
paring only cardiac terms [29]. Let �LM0 and �LM1 be the Fourier transforms of LM
(or any other similarity score) before (LM0) and after (LM1) correction and consider
the cardiac frequency ωc as given in Sect. 2.1.3. We define the Cardiac Alignment
Rate (CAR) as:

CAR := 1−
A�LM1

(ωc)
A�LM0

(ωc)
(4.1)
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for A�LM0
(ωc) and A�LM1

(ωc) the amplitudes corresponding to the cardiac frequency
of �LM0 and �LM1, respectively. The CAR index is close to 1 in the case that cardiac
motion has been suppressed, whereas approaches zero (or becomes even negative) for
a poor rate of motion reduction.

The CAR score is well suited for evaluating cardiac motion suppression at specific
image areas (those showing motion in our case). In order to measure the reduction
of (global) motion a score involving all valid CAR values should be defined.

Figure 4.1: Quality Measure Computation

Figure 4.1 sketches the main steps involved in the computation of our quality mea-
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sure: computation of the image descriptor (top block), conservation of local density
along the sequence (middle block) and the CAR value for all pixels (bottom block).
The first block illustrates the modeling of the local density of mass in terms of the
image local mean. The local mean of the image (shown on the right hand side) is
obtained by computing, for each pixel, the image mean on a window (white square
on the left image) centered on each pixel (black point). In the second block, we have
the evolution of the local mean at a single pixel before (left) and after (right) image
alignment. The plot obtained before alignment presents a well defined periodic be-
havior; afterwards, although the periodic pattern has been suppressed, the function
still presents a variability due to noise and morphologic changes. The third block
shows the (sorted) CAR values obtained for all image pixels on the top plot, as well
as, the position on the images of those pixels achieving extreme values (dotted squares
on the CAR plot) at the bottom. Since we deal with a global movement, all pixels in
an image should present a similar CAR value. However, at blood, uniform, and outer
areas CAR achieves extreme low values (left bottom image), while pixels showing
motion (like calcium-tissue transition on the right image) present a uniform (high)
CAR value.

We define our Conservation of Density Rate (CDR) as the trimmed mean [106] of
the CAR value:

CDR := µ({CAR | CAR > prct}) ∗ 100

for prct a given percentile. We have experimentally checked that CDR computed for
the superior 66% percentile statistically compares (in the sense of random variables)
to the angle relative accuracy (see subsection 4.1.2 and [107]).

4.1.2 Ground Truth

Our ground truth serves to validate the accuracy of the CDR and the accuracy
of motion estimation parameters. In order to do so, and since manual definition
of ground truth motion is not feasible, computational phantoms have been created.
Meanwhile, performance in in vivo data shows CDR reliability in clinical cases.

Synthetic Experiments

Our synthetic experiments focus on addressing:

• Accuracy of the motion parameters estimation. Rigid motion requires
computing two parameters: translation and rotation. Translation accuracy de-
pends on the vessel center of mass, while rotation angle relies on the ability of
Fourier analysis for computing global translation. The center of mass bases on
the estimation of vessel walls geometry and, thus, its accuracy depends on the
appearance of vessel morphology. Concerning angle estimation, the first com-
ponent of the translation given by Fourier analysis on polar images estimates
the rotation angle as far as the center of mass is accurate. Any deviation makes
the horizontal component underestimate the rotation angle, since it would also
decompose into a vertical shift. We have generated computational dynamic
phantoms simulating different vessel morphologies and motion patterns.
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• Reliability of CDR as measure of parameters accuracy. The motion
parameters used for generating the phantoms constitute the ground truth. The
absolute and relative errors for the difference between estimated and ground
truth parameters are our quality measures. In order to validate CDR we have
compared it to the relative accuracy of the rotation angle (see subsection 4.1.3).
We have chosen the angle relative accuracy since its computation depends on
the center of mass and, thus, it reflects the overall error. We also report results
obtained for the cross-correlation (CC) computed on LM images.

Our computational phantoms have been created by applying a rigid motion (given
by eq.(2.1)) to still sequences distilled from real pullbacks. We have considered two
motion models:

1. Synthetic Profiles. In order to illustrate that there are no limits in parame-
ters range, synthetic motions simulate a frame-to-frame angular step of 1o and
10o. Two different patterns have been considered: a periodic sinusoidal motion
(with several amplitudes and frequencies in the cardiac range) and a quadratic
function.

2. In vivo Profiles. In order to produce motions as realistic as possible we have
used motion parameters extracted from in vivo sequences using our methodol-
ogy. Since performance relies on the translation accuracy (strongly dependant
on vessel appearance), errors do not benefit from using motion patterns com-
puted with our methodology. We have considered 5 in vivo motion patterns.

Regarding vessel morphologies, we have used two models:

1. Static Model. It is based on a unique image repeated 200 times simulating a
sequence block of a motion-less artery pullback. Errors for this model constitute
the lower bound for the methodology accuracy.

2. Sequence-based Model. It is obtained by compensating motion of in vivo
pullbacks and detects the sensitivity to varying morphologies (see fig. 5.1). We
have taken 5 vessel segments not belonging to the set used for extracting motion
patterns.

In-vivo Data

Performance in real pullbacks has been validated in 32 vessel segments from clinical
cases of the Hospital Universitari ”Germans Trias i Pujol” in Badalona, Spain:

• 17 Left Anterior Descending (3 ostial, 2 proximal, and 12 medium)

• 11 Right Coronary (2 ostial, 5 proximal, and 4 medium)

• 4 Left main Coronary (2 medium and 2 distal)

Sequences have been recorded using a Galaxy-BostonSci device at 40 MHz with
a rotating single transducer and constant pullback (0.5 mm./s.). The digitalization
rate was 30 fps and digitized images were 480 × 480 pixels with a resolution of 0.04
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mm/pixel. The segments analyzed are 5-6 mm long (200-300 frames per pullback)
and cover different plaques (from soft to calcified), morphologies (including branches),
and motion artifacts (such as longitudinal motion).

4.1.3 Goodness Measures

Let us note ℘k = {tkx, tky , θk} = {pk
1 , pk

2 , pk
3} the set of motion parameters used to

generate the kth frame of a synthetic sequence and ℘̃k = {t̃kx, t̃ky , θ̃k} = {p̃k
1 , p̃k

2 , p̃k
3}

the parameters estimated by our algorithm. For each frame k and motion parameter
i, we consider the absolute errors (Ek

i ) and relative accuracies (εk
i ) defined [107] as:

Ek
i = |pk

i − p̃k
i | εk

i = (1− |pk
i−p̃k

i |
pk

i
) ∗ 100

These quantities provide, for each sequence (seq) and motion parameter, an accuracy
function. In order to obtain a single quality score for each sequence, we consider the
maximum and average of accuracy functions over all sequence frames:

E∞
i,seq = max

k
Ek

i , E1
i,seq =

1
N

N�

k=1

Ek
i , ε1

i,seq =
1
N

N�

k=1

εk
i (4.2)

for N the number of frames of each synthetic sequence.
The statistical ranges of the norms (4.2), given by the mean ± the variance for

all phantoms, indicate the overall accuracy (mean) and stability (variance) of the
method. Error ranges are given in pixels for the translation and in degrees (pixel
precision in polar coordinates) for the rotation angle.

In the case of CC, normalized cross-correlation [81] is computed between the
(whole) image at time k and the reference one and 3 scores are considered:

• CC0: CC average along the original sequence.

• CC1:CC average along the processed sequence.

• CAR on CC: defined by (4.1) as 1−
A �CC1

(ωc)

A �CC0
(ωc)

Image misalignment in IVUS sequences mainly follows from rigid motion [73] and,
in our simulated IVUS sequences, only depends on it. It follows that, in our synthetic
experiments, images in processed sequences are aligned in the measure that such rigid
motion has been properly compensated. Motion is correctly compensated if and only
if motion parameters are correctly estimated. Thus, a measure of the increase in image
alignment (CDR) and the accuracy in the estimated parameters (ε1

3) are two different
procedures for assessing the same concept (at least in synthetic tests). Statistical
analysis comparing means (paired Student t-test with confidence intervals, CI, at
95% ) and pdf’s (Kolmogorov-Smirnov goodness-of-fit) are used to check whether
there is any significant difference between alignment measures and ε1

3. We also report
Pearson correlation coefficient and regression coefficients for CDR and ε1

3.
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4.2 Longitudinal Dynamics

For the assessment of cardiac phase retrieval, we compare each automatic phase re-
trieval to a manual sampling of the sequence. Furthermore, each combination of the
motion profile extracted with a filter applied retrieves a different sampling. Thus, in
order to determine the best strategy, we use the statistical method described in [108]
for detecting any significant difference in the performance of the strategies.

4.2.1 Ground Truth

We have analyzed 22 vessel segments 420-690 frames long (7-11.5 mm approximately)
from the IVUS database of InCor (Hospital das Cĺınicas da Faculdade de Medicina,
Universidade de São Paulo). Sequences were recorded with a Galaxy-BostonSci device
at 40 MHz with a rotating single transducer and constant pullback with speed of 0.5
mm./s. The digitalization rate was 30 fps.

Automatic samplings were compared to the frames achieving extrema lumen areas.
These extrema were manually detected by exploring longitudinal cuts by selecting
minimums and maximums of intima/lumen and media-adventitia transition profiles.
Figure 4.2 shows an example of manual samplings reflecting minimums of lumen area.

Figure 4.2: Manual Sampling for a Sequence

4.2.2 Goodness Measures

The distances between each manual detected frame and the automatic one most close
to it were computed. That is, if sk and s̃k are frame positions in the sequence for a
manual and automatic sampling respectively, we define their distance as the absolute
differences between their positions:

Ek = |sk − s̃k|

The distances of all frames provide a distance map for each patient. As for in-plane
dynamics, we retrieve a single quantity for each sequence (seq) by averaging Ek over
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all sampled frames (N):

E1
seq =

1
N

N�

k=1

Ek

Statistical ranges (given by the mean ± the variance, µ± σ) of errors for all patients
indicate the accuracy of each of the method.

The Nemenyi Test

For each combination of the motion profile extracted with a filter specific, a particular
sampling is retrieved. In order to detect if there are any sampling method significantly
different, we use the multiple comparison methodology proposed by Demsǎr in [108].

The goal is to compare a set of k filters (or configurations for a certain algorithm)
over N data sets (signals in our case). Let cj

i be the performance score (distances
in our case) of the j−th algorithm on the i−th data set. The goal is to decide
whether, based on the values cj

i , the algorithms are statistically significantly different.
In addition, when there are more than two algorithms, we are also interested in
finding out a particular algorithm differing in performance from the others. In the
case of multiple repetitions of the experiments, we can only take into account the
variance values σj

i if all the observations are independent. In general, the standard
validation methodologies do not accomplish this assumption, that is, most of the
observations are shared between the different repetitions of the experiment (i.e. in
a K−fold cross validation, at least K − 2 groups of samples are shared between two
consecutive learning cycles). Since our experiments cannot guarantee independence
between observations, from now on the variances will be deprecated, and only the
mean value will be considered for the statistical analysis.

In significance testings, the null hypothesis states that all tested algorithms are
equivalent. The first step in any significance testing is to determine whereas the null
hypothesis can be rejected. In this context, there are two kinds of errors that can
appear during the statistical analysis:

Type I: A true null hypothesis is incorrectly rejected. The probability of a Type I
error is commonly designated by α and is called the Type I error rate.

Type II: A false null hypothesis is failed to be rejected. The probability of a Type
II error is commonly designated by β and is called the Type II error rate. A
Type II error is only an error in the sense that an opportunity to reject the null
hypothesis correctly was lost. It is not an error in the sense that an incorrect
conclusion was drawn since no conclusion is drawn when the null hypothesis is
not rejected.

The issue of multiple hypothesis testing is a well-known statistical problem. The usual
goal is to control the family-wise error, the probability of making at least one Type I
error in any of the comparisons.

Let rj
i be the rank of the j−th of k algorithms on the i−th of N data sets. The

Friedman test compares the average ranks of algorithms, Rj = 1
N

�
i rj

i . Under the
null-hypothesis, all the algorithms are equivalent and their average ranks Rj are equal.
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Thus, the Friedman statistic, given by:

χ2
F =

12N

k(k + 1)




�

j

R2
j −

k(k + 1)2

4



 (4.3)

is distributed according to χ2
F with k−1 degrees of freedom when N and k are grater

than given numbers (i.e N > 10 and k > 5). For a small number of algorithms and
data sets, exact critical values have been computed [109,110].

In [111], Iman and Davenport showed that Friedman’s χ2
F is undesirably conser-

vative and proposed a better statistic, given by:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(4.4)

this statistic is distributed according to the F -distribution with k−1 and (k−1)(N−1)
degrees of freedom. The null-hypothesis will be rejected only if FF is smaller than
the critical value of the F -distribution for a given confidence value α. The critical
values can be found in any statistics book, and a representation is shown in table 4.1
and table 4.2.

Table 4.1

F Distribution critical values for α = 0.1

v1\v2 1 2 3 4 5 7 10 15 20
1 161.45 199.50 215.71 224.58 230.16 236.77 241.88 245.95 248.01
2 18.513 19.000 19.164 19.247 19.296 19.353 19.396 19.429 19.446
3 10.128 9.5522 9.2766 9.1172 9.0135 8.8867 8.7855 8.7028 8.6602
4 7.7086 6.9443 6.5915 6.3882 6.2560 6.0942 5.9644 5.8579 5.8026
5 6.6078 5.7862 5.4095 5.1922 5.0504 4.8759 4.7351 4.6187 4.5582
7 5.5914 4.7375 4.3469 4.1202 3.9715 3.7871 3.6366 3.5108 3.4445
10 4.9645 4.1028 3.7082 3.4780 3.3259 3.1354 2.9782 2.8450 2.7741
15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7066 2.5437 2.4035 2.3275
20 4.3512 3.4928 3.0983 2.8660 2.7109 2.5140 2.3479 2.2032 2.1241
30 4.1709 3.3159 2.9223 2.6896 2.5336 2.3343 2.1646 2.0149 1.9317

At this point, if the null-hypothesis is rejected, we can proceed with a post-hoc test.
Otherwise, the methods are not statistically different. Therefore, either they have
equal performance or we need more data sets in order to reject the null-hypothesis.
There are two possible scenario: The Nemenyi test [112] is used when all classifiers are
compared to each other. The performance of two classifiers is significantly different if
the corresponding average ranks differ by at least the critical difference

CD = qα

�
k(k + 1)

6N
(4.5)

where critical values qα are based on the Studentized range statistic divided by
√

2
(see Table 4.3).
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Table 4.2

F Distribution critical values for α = 0.05

v1\v2 1 2 3 4 5 7 10 15 20
1 39.864 49.500 53.593 55.833 57.240 58.906 60.195 61.220 61.740
2 8.5264 8.9999 9.1618 9.2434 9.2926 9.3491 9.3915 9.4248 9.4413
3 5.5384 5.4624 5.3907 5.3426 5.3092 5.2661 5.2304 5.2003 5.1845
4 4.5448 4.3245 4.1909 4.1073 4.0505 3.9790 3.9198 3.8704 3.8443
5 4.0605 3.7798 3.6194 3.5202 3.4530 3.3679 3.2974 3.2379 3.2067
7 3.5895 3.2575 3.0740 2.9605 2.8833 2.7850 2.7025 2.6322 2.5947
10 3.2850 2.9244 2.7277 2.6054 2.5216 2.4139 2.3226 2.2434 2.2007
15 3.0731 2.6951 2.4898 2.3615 2.2729 2.1582 2.0593 1.9722 1.9243
20 2.9746 2.5893 2.3801 2.2490 2.1582 2.0397 1.9368 1.8450 1.7939
30 2.8808 2.4887 2.2761 2.1423 2.0493 1.9269 1.8195 1.7222 1.6674

Table 4.3

Critical values for the two-tailed Nemenyi test

# methods 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

When the aim is to compare the performance of a set of methods against a given
one used as control method, an efficient alternative to Nemenyi test is the Bonferroni
correction or similar procedures. The Nemenyi test adjust the critical value by means
of k(k−1)

2 comparisons. However, for comparing a set of methods against a control
method k − 1 comparisons are enough. Although Bonferroni and similar test are
generally conservative and can have little power, in this case, they are more powerful
than the Nemenyi test. The test statistics for comparing the i−th and j−th classifier
using these methods is

z =
(Ri−Rj)�

k(k+1)
6N

(4.6)

The z value is used to find the corresponding probability from the table of normal
distribution, which is then compared with an appropriate α. The tests differ in the
way they adjust the value of α to compensate for multiple comparisons.

The Bonferroni-Dunn test [113] controls the family-wise error rate by dividing α
by the number of performed comparisons k − 1. The alternative way to compute
the same test is to calculate the CD using equation (4.5), but now using the critical
values for α

(k−1) (see Table 4.4). The comparison between tables for Nemenyi’s and
Bonferroni-Dunn’s test shows that the power of the post-hoc test is much greater
when all classifiers are compared only to a control classifier. We thus should not
make pairwise comparisons when we, in fact, only test whether a newly proposed
method is better than the existing ones.
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Table 4.4

Critical values for the two-tailed Bonferroni-Dunn test. The number of

methods include the control method

# methods 2 3 4 5 6 7 8 9 10
q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773
q0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

4.3 Vessel Structures

In this case, ground truth is given by manual identification of structures in IVUS
images. Since discrepancies among experts provide a non-unique ground truth, we
present a protocol based on comparisons of inter-observer variability to manual seg-
mentations.

4.3.1 Ground truth

The study group has been designed to assess the ability of the reported algorithm to
detect the adventitia border in the presence of different plaques, artifacts and vessel
geometries. A total number of 5400 images extracted from 11 different cases have
been tested. The sequences analyzed are clinical cases of a Boston Scientific Clear
View Ultra scanner at 40 MHz with constant pull-back at 0.5 mm/s and acquisition
rate of 25 frames/s from the Hospital Universitari Germans Trias i Pujol in Badalona
(Spain). The digitalized sequences are 384 × 288 images with a spatial resolution of
0.0435 mm per pixel. We have segmented 22 vessel segments of a length ranging from
4 to 6 mm (200-300 frames) and including:

• 6 segments with uncomplete vessel borders due to side-branches and sensor
guide shadows.

• 5 calcified segments.

• 9 segments with non calcified plaque.

• 2 normal segments.

For each segment, the adventitia has been manually traced every 10 frames by 4
experts in IVUS image interpretation, which yields a total number of 540 validated
frames with 4 different manual models each.

4.3.2 Goodness Measures

To assess segmentation accuracy, the automatically detected borders have been com-
pared to the manual models. Accuracy is quantified with the following standard
measures:
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1. Absolute and Signed Distances.

Distance maps to manual contours serve to compute the difference in position
between automatic and manually traced curves. Such maps encode for each
pixel, p = (xp, yp), its distance to the closest point on the manual contour:

D(p) = minq∈γ(d(p, q)) (4.7)

= minq∈γ

��
(xp − xq)2 + (yp − yq)2

�

where q are points on the manually identified contour. Signed distances (SgnD)
[82] weight the value D(p) depending on wether the pixel p lyes inside or outside
the target curve γ. Its mean value detects any bias in curve position, that is,
wether detections are systematically bigger or smaller than manual segmenta-
tions.

We will consider absolute (in mm) and relative (in %) distance errors. Absolute
errors are given by formula (4.7), while relative ones are the ratio:

RelD(p) = 100 · D(p)
d(q,O)

where the origin, O, is the mass center of the manual contour and q is the point
achieving the minimum in (4.7). Since relative errors take into account the true
dimensions of the vessel, they reflect positioning errors better.

For each distance error, its maximum and mean values on the automated con-
tour are the error measures used to assess position accuracy. If PixSze denotes
the image spatial resolution and p is any point on the automatically traced
adventitia, then the set of functions measuring accuracy in positions are:

• Maximum distance errors (in mm and %):

MaxD = maxp (D(p) · PixSze)
RMaxD = maxp (RelD(p))

• Mean distance errors (in mm and %):

MD = meanp (D(p) · PixSze)
RMD = meanp (RelD(p))

• Mean signed distance error (in mm):

MSD = meanp (SgnD(p) · PixSze)

2. Area Differences.

Binary images of manual, IM (i, j), and automatic, IA(i, j), borders serve to
compute the following measure for area accuracy:
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• Percentage of Area Differences

AD = 100 ·
�

i,j |IM (i, j)− IA(i, j)|
�

i,j IM (i, j)

The interval given by the mean ± standard deviation computed over the 4 experts
contours indicate the statistical range of values for each of the automated errors
(MaxD, RMaxD, MD, RMD and AD).

Inter-observer variability is obtained by computing the error measures for the
models made every two independent observers and it, thus, quantifies discrepancy
among experts. A Student T-test is used to determine if there is any statistical
significant difference between inter-observer and automated distance errors average.
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Chapter 5

Experiments

5.1 In-plane Dynamics

5.1.1 Synthetic Data

Tables 5.1 and 5.2 report the absolute error ranges (E1, E∞) for synthetic motion
profiles. Note that errors do not substantially differ between the two synthetic motion
profiles considered (periodic and quadratic). As expected, error ranges increase in
table 5.2 (Sequence Model) as morphological changes appear. Regarding the step,
there is no difference in E1 between 1o and 10o. Student (pairwise) t-tests return a
p-value equal to 0.99 (CI = (−0.0098, 0.0091)) for Static models and equal to 0.98
(CI = (−0.96, 0.95)) for Sequence ones.

Table 5.1

Angle Absolute Error Ranges for Synthetic Profiles - Static Model

1o step 10o step
E1 E∞ E1 E∞

Periodic 0.016 ± 0.081 0.032 ± 0.013 0.016 ± 0.008 0.036 ± 0.017
Quadratic 0.024 ± 0.017 0.051 ± 0.023 0.025 ± 0.013 0.053 ± 0.016

Table 5.2

Angle Absolute Error Ranges for Synthetic Profiles - Sequence Model

1o step 10o step
E1 E∞ E1 E∞

Periodic 2.215 ±0.840 4.904 ±1.446 2.217 ±0.827 4.934±1.417
Quadratic 2.349 ±1.245 5.164 ±1.817 2.366 ±1.316 5.228±1.813

87
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Figure 5.1 shows box plots for (E1
i )i=1,2,3 for in vivo profiles and Sequence models.

A reference image from each of the sequences is shown at the bottom row. Case1 and
Case2 are vessel segments centered at the catheter, Case3 and Case4 are off-center and
Case5 is a branch with longitudinal motion. A horizontal line indicates the bound
for sub-pixel accuracy. In general, there is an increase in angular error due to its
dependency on the center of mass.

Figure 5.1: Box plots for the sequence-based phantoms (first row) and a represen-
tative image of the sequence for each phantom (second row)

In table 5.3 we summarize the absolute error ranges for in vivo motion profiles.
Static models achieve sub-pixel accuracy for average ranges (E1). As errors for syn-
thetic profiles, errors increase for Sequence models, although average (E1) ranges are
below 1.67 pixels for translations (tx) and 2.44o for rotations (θ).

Table 5.3

Absolute Error Ranges for in vivo Profiles.

Static Model Sequence Model
E∞ E1 E∞ E1

tx 1.50 ± 1.23 0.49 ± 0.42 3.48 ± 0.90 1.09 ± 0.58
ty 1.53 ± 0.88 0.48 ± 0.25 2.94 ± 1.24 0.79 ± 0.16
θ 1.13 ± 0.40 0.34 ± 0.17 4.98 ± 1.50 1.72 ± 0.72

Tables 5.4 and 5.5 report the statistics summary for the validation of CDR (using
the upper 66% CAR percentile) as accuracy measure. In table 5.4 we report ranges
for ε1

3 and CDR, as well as, the (pairwise) t-test p-value and the confidence interval
(CI). There is no significant difference in means between CDR and ε1

3 with at most
a ±9% of discrepancy. According to a Kolmogorov-Smirnov test for comparison of
random variables, there is no evidence of difference in their distributions (with a p-
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Table 5.4

CDR vs Angle Relative Error

ε1
3 CDR p-val CI

Static 95.09 ± 4.63 93.56 ± 4.86 0.3334 (-1.67, 4.73)
Sequence 76.83 ± 13.00 76.59 ± 8.39 0.9545 (-8.60, 9.08)

Table 5.5

CDR vs Other Alignment measures

CDR CC0 CC1 CAR on CC

Static 93.56 ± 4.86 89.27 ± 9.46 93.57 ± 8.43 70.95 ± 21.53
Sequence 76.59 ± 8.39 88.24 ± 6.24 89.58 ± 5.72 28.36 ± 45.63

value of 0.3334 and 0.9545 for Static and Sequence phantoms, respectively). Table
5.5 is devoted to comparison of CDR to normalized cross-correlation measures: CC0,
CC1 and CAR on CC. Regarding CC, in the absence of morphological changes
(Static Model), CC1 and CDR ranges are similar. On Sequence phantoms, there
is no significative difference between CC0 and CC1, which suggests using the CAR
score. However, the global nature of CC, makes CAR on CC underestimate the
amount of motion suppressed.

Figure 5.2: Linear Correlation between CDR and Angle Relative Accuracy (ε1
3).
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Figure 5.2 shows the regression line for the point cloud given by plotting ε1
3

(X variable) against CDR (Y variable). The regression coefficients for the model
Y = b X + a are b = 0.9315 and a = 0.0206. Pearson’s correlation coefficient
(ρ) indicates a significant linear dependency (ρ = 0.6611). Finally, the F-statistics
for testing b = 0 clearly show (with F − pval = 1.1372e−5) that both scores are
correlated.

5.1.2 In vivo Data

CDR = 89% CDR = 83% CDR = 75% CDR = 63%

(a) (b) (c) (d)

Figure 5.3: Longitudinal cuts for sequences of four different patients (columns),
from the best corrected sequence (a) to the worst corrected one (d). Original frames
are shown on the first row, original longitudinal cuts on the second row, and corrected
ones on the third row.

Figure 5.3 shows four cases with decreasing CDR values (from left to right): 89%,
83%, 75%, and 63%. The first row shows a frame of the original sequences. The
corresponding longitudinal cuts at the angles indicated by white lines are shown on the
second row and the same cut after sequence alignment on the last one. The sequence
in the first column (fig.5.3(a)) presents a structure misalignment due to rotation.
The calcium shadow appears and disappears in the original longitudinal cut, whereas
it shows a uniform appearance after alignment. In the second column (fig.5.3(b))
translation introduces a saw-shape in the original longitudinal cut (especially at the
end of the segment). After compensation, only a faint undulation due to radial dilation
remains. The longitudinal cut in fig.5.3(c) shows a straight profile (both before and
after alignment) in spite of a lower CDR. This phenomenon, which appears in the
absence of motion, is inherent to any relative measure like CDR [107]. Finally, in
fig.5.3(d) we show the worst performer, both, in terms of longitudinal cut appearance
and CDR value. Since a proper alignment is only achieved at the second half of
the segment, we have 63% of motion reduction. Regarding objective measurement of
IVUS alignment, we have that the statistical range for CDR gives an overall motion
reduction of 82.05%± 6.61%.
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5.2 Longitudinal Dynamics

The methodologies were implemented in Matlab code on a Pentium(R) with 3GHz
CPU. The average processing time per frame was 36 ms. The set of filters scanned,
Gi for gaussian filters and Bi for Butterworth ones is the following.

G1 : {σ = 0.001}; G2 : {σ = 1.5}; G3 : {σ = 10}

B1 : {n = 1, δ = 0.5}; B2 : {n = 1, δ = 0.05}; B3 : {n = 1, δ = 0.005};
B4 : {n = 2, δ = 0.5}; B5 : {n = 2, δ = 0.05}; B6 : {n = 2, δ = 0.005};
B7 : {n = 4, δ = 0.5}; B8 : {n = 4, δ = 0.05}; B9 : {n = 4, δ = 0.005}

Tables 5.6 and 5.7, report the average ranks reflecting each filter performance (the
smaller, the better).

Table 5.6

Average Rank of the Gaussian Filters with parameters given by σ for Nemenyi

Test

σ 0.001 1.5 10
Rank 9.43 4.71 5.75

Table 5.7

Average Rank of the Butterworth Filters with parameters given by (n, δ) for

Nemenyi Test

n\δ 0.5 0.05 0.005
1 4.93 4.71 8.12
2 5.28 4.96 8.62
4 5.81 6.18 9.43

For a significance level of 0.1, the Nemenyi critical difference (CD) is 3.86. The
test detects that Butterworth filters with n = 1, 2, 4, δ = 0.005 (B3, B6 and B9) and
Gaussian with σ = 0.001 (G1), which are too restricted around ωc, are significantly
worst. The Nemenyi test also reports that there is not enough evidence of a signif-
icantly different performance among the remaining methods. Figure 5.4 shows the
rank of filters from right to left (the best is on the right) together with the critical
difference in order to visually compare all filters. There are two distinguished sets,
but there are no significative differences between the filters in each set. Table 5.8
reports the ranges, by the mean ± the variance (σ ± µ) of the filters of the set with
better ranks. Values in the first column are in frames, the ones of the second column
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Figure 5.4: Comparison of different filters using the Nemenyi test.

are in seconds and the last column correspond to the values in millimeters. As fig-
ure 5.4 shows, there is no significative difference between them. The Gaussian filter
with σ = 1.5 achieves the best results with an error within 3.26± 1.55 frames, which
corresponds to 0.05± 0.03 mm.

Table 5.8

Average Errors of the best set of filters

Method Frames Seconds Millimeters
G2 3.2580± 1.5458 0.1086± 0.0515 0.0543± 0.0258
G3 3.5499± 1.5352 0.1183± 0.0512 0.0592± 0.0256
B1 3.4336± 1.6755 0.1145± 0.0558 0.0572± 0.0279
B2 3.4455± 1.7838 0.1148± 0.0595 0.0574± 0.0297
B4 3.3620± 1.7163 0.1121± 0.0572 0.0560± 0.0286
B5 3.5272± 1.7959 0.1176± 0.0599 0.0588± 0.0299
B7 3.4065± 1.7005 0.1136± 0.0567 0.0568± 0.0283
B8 3.6655± 1.8971 0.1222± 0.0632 0.0611± 0.0316

Figure 5.5 shows an example of the automatic sampling on a real longitudinal cut.
The top image is a longitudinal cut of 42 mm. long showing a side branch on the
upper half. The left bottom image shows the image-based ECG sampling in dashed
lines at the side branch segment. The right bottom image shows the longitudinal cut
sampled at end diastole rate.

Figure 5.6 shows the performance of our method for the Gaussian filtering in 2
large longitudinal cuts. The original cuts are in the left, while the cuts sampled at
end diastole rate are in the right. For the first segment, we can notice the continuous
profile for the lumen contour, while in the second segment, we can follow up the
calcium plaque present in the vessel.
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Figure 5.5: Image-based ECG sampling on a longitudinal cut.

Figure 5.6: Results of Image-based ECG sampling for two different longitudinal
cuts.
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5.3 Vessel Structures

The set of optimal parameters for a Boston Clear View is given by:

PF1 = 0.1906X + 0.9817Y

with thresholding parameters set to:

τPF1 = 0.0567; ρX = 6%; ρF = 85%

for computation of vessel borders mask and

PF2 = −0.1498PF1 + 0.9887Z, τPF2 = −0.1241

for the calcium mask. The adventitia detection parameters ensure a 99.95% of true
C1 detections. We note that, by the feature space definition, we only have a 17% of
false positives, which just represent 6% of the total number of points classified in C1.
This fact favors the use of a length filtering on adventitia detections as fake response
remover. In the case of calcium extraction, the threshold achieves less than a 1% of
noise and ensures 90.2156% of calcium detections. For the computation of the final
B-snake model we have used 30 control points uniformly placed every 12 angles.

We have analyzed errors individually for each patient gathered by vessel plaque
nature and globally. Whisker boxes are usual to analyze within patient variability and
confident intervals serve to detect any significant difference between different plaques.

Figure 5.7 shows whisker boxes for mean distance absolute errors (top plot) and
mean inter-observer variations (bottom plot) for soft plaque and calcium segments.
Each box contains the mean distance errors obtained from the 4 experts segmenta-
tions (80 to 120 samples per box) for a single vessel segment. Boxes labeled with
NC correspond to non-calcified segments and those labeled with C to calcified ones.
An analysis of the whisker boxes reflects robustness of segmentations: the smaller the
boxes are, the more reliable the method is. Whisker boxes serve to visually detect any
anomaly in the models. In general terms, the means of automated errors are slightly
higher than inter-observer variability means. However, since automatic segmenta-
tions present a significantly smaller variation range than inter-observer variability,
our segmentations are within the experts discrepancy rate (see T-tests comparing
means summarized in table 5.12. Lack of reliable information at large angular sec-
tors, significantly increases errors variability in calcified segments,both for manual
segmentations and automatic detections. The large range of the whisker box of the
case C2 detects it as a vessel segment of difficult manual identification that should be
excluded from any statistical analysis. Larger boxes for automated detections (top)
in cases NC5 and C3 comparing to their counterparts (bottom) indicate that there
are specially difficult cases for our segmenting strategy. At the end of the section, a
detailed analysis of such miss detections is done.

Statistical ranges (mean ± standard deviation) for automatic errors (AUT) and
inter-observer variability (INT-OBS) are summarized in tables 5.9, 5.10, and 5.11.
Patients presenting an unusual large inter-observer variability have been excluded,
since we consider they are anomalous cases with difficult and non robust manual
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Figure 5.7: Whisker Boxes for Automated Error,(top), and Inter-Observer Vari-
ability, (bottom).

Table 5.9

Performance Evaluation of the Adventitia Segmentation Strategy. Automatic

Errors versus Inter-Observer Variability for non-calcified

INT-OBS AUT
MaxD (mm) 0.4208 ± 0.1794 0.4238 ± 0.1026
RelMaxD (%) 0.3963 ± 0.1788 0.3868 ± 0.1075
MeanD (mm) 0.1783 ± 0.0698 0.1864 ± 0.0364
RelMeanD (%) 0.1647 ± 0.0668 0.1684 ± 0.0387
Area Dif. (%) 6.6799 ± 3.1579 7.2571 ± 1.9842
SgnMeanD (mm) 0.0004 ± 0.0769 0.0283 ± 0.0540

identification. We present statistics for non-calcified segments in table 5.9, calcified
ones in table 5.10 and a total population of 20 vessel segments in table 5.11.

A summary of the results of the T-tests comparing the inter-observer variability
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Table 5.10

Performance Evaluation of the Adventitia Segmentation Strategy. Automatic

Errors versus Inter-Observer Variability for calcified segments

INT-OBS AUT
MaxD (mm) 0.6627 ± 0.3610 0.7161 ± 0.2532
RelMaxD (%) 0.5469 ± 0.3171 0.6116 ± 0.2665
MeanD (mm) 0.2650 ± 0.1306 0.2885 ± 0.0947
RelMeanD (%) 0.2142 ± 0.1113 0.2388 ± 0.0931
Area Dif. (%) 9.3511 ± 5.7529 10.0428 ± 4.0390
SgnMeanD (mm) 0.0163 ± 0.1213 -0.0381 ± 0.0912

Table 5.11

Performance Evaluation of the Adventitia Segmentation Strategy. Automatic

Errors versus Inter-Observer Variability for all segments

INT-OBS AUT
MaxD (mm) 0.5386 ± 0.3075 0.5715 ± 0.2296
RelMaxD (%) 0.4697 ± 0.2664 0.5122 ± 0.2344
MeanD (mm) 0.2206 ± 0.1126 0.2265 ± 0.0688
RelMeanD (%) 0.1888 ± 0.0945 0.1972 ± 0.0662
Area Dif. (%) 7.9813 ± 4.7962 8.6032 ± 3.3436
SgnMeanD (mm) 0.0081 ± 0.1013 0.0041 ± 0.0801

and automatic errors averages is given in table 5.12. We report the p-value and the
confidence interval for the difference in means. Statistics exclude outliers and T-tests
are computed over the total errors in table 5.11.

According to a two tailed T-test, there is no significant difference between inter-
observer and automated mean absolute distance errors and difference in areas. For
mean distance errors the p-value equals p = 0.177721 and the confidence interval for
the true difference in means at a significance level of 95% is CI = (−0.002684, 0.014491).
In the case of percentage in area difference, p = 0.153404 and the interval (also at a
significance level of 95%) is CI = (−0.017985, 0.114350). Maximum errors for auto-
mated detections are slightly above the range of maximum inter-observer variability.
In order to robustly determine the fraction of increase, we use a single tailed T-test
to check if the null hypothesis statement ”the mean of automated maximum errors
is above λ times the mean of maximum inter-observer variabilities” is true. The true
proportion between maximum automated error and inter-observer variability is be-
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Table 5.12

Statistics Summary on T-tests comparing the means of Inter-Observer

Variability and Automatic Errors.

Confidence Interval (CI) p-value
MeanD (-0.002684,0.014491) 0.177721
Area Dif. (-0.017985,0.114350) 0.153404
SgnMeanD (-0.002401,0.010787) 0.212219

tween the minimum λ rejecting the null hypothesis and the maximum accepting it.
For λ = 1.102, the null hypothesis was accepted with a p-value, p = 0.053901 and
for λ = 1.103, it was rejected with p = 0.049846. We conclude that the increase
in maximum automated errors is under a 10.3%. Finally a T-test on the mean of
the automated signed distance error shows that in average it is zero as the p-value
equals p = 0.212219 and the confidence interval for the true mean is a tiny interval
containing the zero value CI = (−0.002401, 0.010787).

Some of the adventitia segmentations achieved with the presented strategy are
shown in the next figures. We split them in four different cases: the first (figure 5.8)
corresponds to normal vessel segments, the second (figure 5.9) to vessel segments with
soft plaque. The third (figure 5.10) have been extracted from calcified vessel segments
and finally, the last one (figure 5.11) shows images with missing information, mainly
due to side branches and sensor guide shadows.

1. NORMAL SEGMENTS In the first column we present a normal segment,
whereas in the second one, the vessel presents non-fibrous plaque.

2. SOFT PLAQUE SEGMENTS In the first column, we present a vessel segment
with lipidic plaque, whereas, in the second column, the vessel segment con-
tains soft plaque. Notice that in the anisotropic contour closing step (fig.5.9(l)
to fig.5.9(m)) we use image borders continuity, since these images come from
cartesian coordinates. Thus, although adventitia points before the ACC do not
appear on the right of the image, ACC closes in the two directions from the left
side of the image.

3. CALCIFIED PLAQUE SEGMENTS In this case, both vessels contain calcified
plaque. Notice that, although intima is detected, both polar coordinates and a
rigid snake, yield that the final closed model corresponds to the adventitia.

4. SIDE BRANCHES AND SENSOR SHADOW SEGMENTS Both vessel seg-
ments lack of information, the first due to a calcified area plus a side branch
and the second column, because of sensor shadow and a little side branch. The
key point of this kind of images is the sparse information, which we discuss in
the next subsection.
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(a) (h)

(b) (i)

(c) (j)

(d) (k)

(e) (l)

(f) (m)

(g) (n)

Figure 5.8: Automated Adventitia Detections for Normal Vessel Segments
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(a) (h)

(b) (i)

(c) (j)

(d) (k)

(e) (l)

(f) (m)

(g) (n)

Figure 5.9: Automated Adventitia Detections for Vessel Segments with Soft Plaque
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(a) (h)

(b) (i)

(c) (j)

(d) (k)

(e) (l)

(f) (m)

(g) (n)

Figure 5.10: Automated Adventitia Detections for Calcified Vessel Segments



5.3. Vessel Structures 101

(a) (h)

(b) (i)

(c) (j)

(d) (k)

(e) (l)

(f) (m)

(g) (n)

Figure 5.11: Automated Adventitia Detections for Uncomplete Vessel Segments
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5.4 Discussion

By combining vessel appearance and shape, we provide explicit formulae for rigid
in-plane motion parameters. This sets no limits to the capture range of motion pa-
rameters and we have equal performance (tables 5.1 and 5.2) for frame-to-frame steps
of 1o and 10o. Translation is given (independently for each frame) in absolute terms,
whereas rotation is computed by accumulating frame-to-frame transformations. In
large segments, the latter might introduce accumulation errors. Alignment of large
segments is a difficult task, due to morphological variations, which also might drop
the accuracy of registration algorithms. Therefore, we consider that this does not
represent a major limitation of our approach compared to registration strategies. Ex-
periments on sequence-based synthetic models (table 5.3) show that the main source
of error arises from morphological changes along the vessel, with average errors of
1.09 pixels ∗ 0.04 mm/pixel = 0.044mm for translations and 1.72o for rotations. Our
errors favorably compare to the numbers reported in [114], which achieve mean errors
of 0.064mm and 7.8o, provided that the catheter rotation does not exceed 5o.

Our quality measure, CDR, bases on the conservation of the image local density
of mass (given by the local mean) and only considers image pixels with noticeable
motion. Results on Sequence models (table 5.4) show that CDR correlates to the
angular relative accuracy. Results on real pullbacks show that, in general, CDR also
correlates to the uniform and continuous appearance of longitudinal cuts (see figure
5.3(a), (b), and (d)). This fact validates CDR as an objective measure of image
alignment. Comparison to global similarity scores, such as cross-correlation (table
5.5), indicates that global approaches are prone to underestimate motion reduction.

Experimental results detect two sources for under performance of the proposed
methodology: sudden morphological changes and non-periodic random motion pat-
terns. In the first case, which is a common limitation in most registration and track-
ing algorithms, changes in appearance mislead image alignment as the objects to be
tracked have significantly changed. The second source of error is inherent to the
definition of rigid (periodic) movement, which is the only motion considered. These
extreme cases, which CDR might drop to 63%, only represent a 6% of the data ana-
lyzed.

Regarding longitudinal dynamics assessment, cardiac phase can be strongly af-
fected by artery lesions and other cardiac factors. Thus, the strategy used to retrieve
it has to be accurately chosen. We propose two different methods for extracting car-
diac signal and a battery of filters to remove noise and other non-cardiac phenomena.
Local approaches allow simple quantities (e.g. image intensity) efficiently (36ms per
frame) retrieve an accurate cardiac phase. Band pass filters support should not be
too restricted around ωc in order to avoid uniform samplings. For segments of ap-
proximately 1 cm average length, the decay of Gaussian filters is better suited with
an error within 0.054± 0.025 mm.

Finally, the reliability of the proposed strategy for adventitia segmentation is
reflected in the global statistics extracted from in vivo sequences segmentation. The
fact that, both, mean distances and vessel areas compare to inter-observer variation
validates our method for extraction of clinical measurements. Since there is no bias
in automated segmentations (the mean signed distance is statistically zero) we can
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ensure that our method achieves an optimal compromise among experts criteria as
automatically traced curves lie between the curves traced by different observers. The
number of outlier bad segmentations requiring manual correction represent less than
a 15% of the studied valid cases.

Still, the striking increase in the error range for the anomalous cases NC5 and C3
needs to be analyzed. Such miss detections correspond to vessel segments that either
the adventitia is hardly identified or there is severe lack of valid information.

Weak visual appearance of the adventitia border is a technical limitation of the
UltraSound acquisition technique and it is cause of disagreement among experts (case
C2 in fig.5.7(b)) in 9% of the cases. Our strategy suffers this kind of error in 18%
of the segments under study (boxes C5, NC2 and NC3 in fig.5.7(a)). We argue that
the only way to minimize the impact of border blurring is taking into account tissue
motion periodicity along the sequence. Even for physicians it is difficult to identify
vessel borders by an analysis of still images. Often, they use cardiac periodicity in
the movement of vessel structures to distinguish between tissue and other structures.

(a) (b) (c)

(d) (e) (f)

Figure 5.12: Adventitia models in images with sparse information. Points detected
(a), (d), final snake (b), (e) and manual model (c), (f).

The second source of large error in automatic detections is lack of information.
Calcium sectors or side branches can take up large angular sectors, thus, distorting
information at these sectors. In the case that the sparse valid information is not uni-
formly distributed along angular sectors, the final model is prone to underestimate
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the border true radial position. Fig.5.12 illustrates the scarce bad distributed infor-
mation artifact. On the first column we show an image with uniformly enough point
distribution and on the second column a pathological case with all available infor-
mation gathered in the first quadrant of the image. Images in fig.5.12(a), (d) depict
the ACC closure modeled by the B-snake in fig.5.12(b), (e). The reference manually
traced contours are shown in fig.5.12(c), (f).

We note that it is reported in the literature [84] that measurements should not
be reported if lack of information is more extensive than 90◦ of arc. Still our error
analysis prompts that lack of strong 3D continuity in the B-snake closing of candidate
points on the vessel borders is the main source of the above error. The use of 2D
NURBS (spline surfaces) instead of 1D splines could reduce the impact of missing
information. However, in our case, they might not succeed in correcting this kind of
miss interpolations. On one hand, NURBS can only take into account local defor-
mations and continuity of the surface. On the other hand, the previously described
pathology is prone to happen at large vessel segments. It follows that NURBS inter-
polation might imply handling the segmentation of the whole image sequence block
(over 1200 frames), which is computationally unfeasible. One possible way of over-
coming lack of information for large vessel segments would be mimicking the experts
strategy used for manually tracing the adventitia borders. Our application [115] to
manually segment vessel borders shows the previous border on the current image to
be segmented and allows the physician to modify it. An informal survey on the key
points and frames used by the expert for border tracing at images with severe lack of
information prompts that they usually keep the model traced on the last valid frame.
This suggests using the information available at the last frame with adventitia points
detected in more than 70% of the vessel angular sectors to complete vessel borders at
images with sparse detections.



Conclusions and Further

Lines

Image processing methodologies are becoming an important tool for using IntraVas-
cular UltraSound for the diagnosis, treatment, and intervention of cardiovascular
diseases. In this work we have approached three main challenging problems: rigid
in-plane dynamics suppression, cardiac phase retrieval, and vessel-structures segmen-
tation.

Rigid in-plane dynamics: We have described a method for estimating and
compensating rigid in-plane dynamics. We have provided explicit formulae for motion
parameters by combining vessel appearance and shape. Fourier development has
shown to be a reliable tool for estimating rotation between consecutive frames as far
as translation is well-estimated. As well, we have decomposed the rotation profile into
its three main contributions: cardiac signal, breathing and geometric components.
Results on synthetic experiments and in vivo segments show that the methods are
suitable for exploring tissue bio-mechanical properties from in vivo clinical cases.

Longitudinal Dynamics: We have presented a methodology for retrieving car-
diac phase from sequences without ECG signal. We have presented two different
approaches to extract cardiac signal from IVUS sequences, as well as two families
of filters for removing non-cardiac frequencies. On one hand, exploring LM evolu-
tion is a fast way to extract cardiac signal from IVUS sequences. On the other one,
the profiles obtained from estimating cardiac rotation show that the algorithm seems
to be a good candidate for globally retrieving cardiac signal. Regarding the filters
used Band-pass filters support should not be too restricted around the main cardiac
harmonic in order to avoid uniform samplings. For segments of approximately 1 cm
average length, the decay of Gaussian filters is better suited.

Structures exploring: We have presented a statistical-deterministic strategy
for detecting vessel borders in IVUS sequences. The combination of a priori knowl-
edge (classification techniques) with filtering techniques based on continuity of image
geometry has proven to be the key point for a robust characterization of vessel (the
adventitia layer, in our case) borders. Once again, rigid in-plane dynamics estimation
seems to be a straightforward method for previously filtering the sequence, although
it can be less precise. By designing an accurate point selection strategy, we avoid
human interaction and the use of longitudinal cuts and ECG-gated acquisitions.

105



106 CONCLUSIONS AND FURTHER LINES

Validation Protocols: Since validation is an essential part of any algorithm
for ensuring a wide clinical applicability, we have taken special care in designing a
validation protocol for each contribution. As well, since there is no objective measure
for dynamics assessment in in vivo sequences, we have described a quantitative score
to objectively assess the amount of motion suppressed.

Further Lines

The methods proposed in this PhD thesis pave the way for several studies.

1. Vessel bio-mechanical properties: Tissue bio-mechanical properties is an
active research area due to its prediction potential. The main artifact hindering
its assessment in coronary arteries is the in-plane rigid motion. Once the se-
quences are stabilized, tissue bio-mechanical properties can be investigated by
applying an elastic motion estimation on segments with uniform kind of plaques.
Furthermore, blood flow can also be explored as far as pixel precision allows to
observe significant changes along the sequence.

2. Objective validation of Longitudinal Dynamics: Lumen area changes are
related to cardiac phenomena, and its comparison to automated sampling en-
couraging. Nevertheless, samplings obtained from ECG signals are an objective
ground truth for validating the method for retrieving cardiac phase.

3. 3D Reconstruction: Although 3D reconstruction only from IVUS sequences is
not feasible without an external reference system, segmentation of vessel struc-
tures is a first step towards the next dimension

4. Structures and dynamics exploring workstation: Rigid motion estima-
tion seems to be a useful algorithm for exploring both, structures and cardiac
dynamics. Preliminary results encourage an exhaustive validation for the assess-
ment of motion estimation as the basis of a framework exploring vessel dynamics
and structures. It would increase the computation efficiency of a workstation
for helping physicians in diagnosing and treating cardiovascular diseases.



Bibliography

[1] V. Fuster, “Mechanisms leading to myocardial infarction: Insights from studies
of vascular biology,” Circulation, vol. 90, no. 4, pp. 2126–2146, October 1994.

[2] I. Kakadiaris, S. O’Malley, M. Vavuranakis, S. Carlier, R. Metcalfe, C. Hartley,
E. Falk, and M. Naghavi, “Signal-processing approaches to risk assessment in
coronary artery disease,” IEEE Signal Processing Magazine, vol. 23, no. 6, pp.
59–62, Nov. 2006.
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• O. Rodŕıguez, J. Mauri, E. Fernández, A. Tovar, V. Valle, A. Hernàndez, D.
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