toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jaume Garcia edit   pdf
openurl 
  Title Statistical Models of the Architecture and Function of the Left Ventricle Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Gar2009a Serial 1499  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-937261-6-4 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2009 Serial 1543  
Permanent link to this record
 

 
Author Ole Vilhelm-Larsen; Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Guidelines for choosing optimal parameters of elasticity for snakes Type Book Chapter
  Year 1995 Publication Computer Analysis Of Images And Patterns Abbreviated Journal LNCS  
  Volume 970 Issue Pages 106-113  
  Keywords  
  Abstract This paper proposes a guidance in the process of choosing and using the parameters of elasticity of a snake in order to obtain a precise segmentation. A new two step procedure is defined based on upper and lower bounds on the parameters. Formulas, by which these bounds can be calculated for real images where parts of the contour may be missing, are presented. Experiments on segmentation of bone structures in X-ray images have verified the usefulness of the new procedure.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;IAM Approved no  
  Call Number IAM @ iam @ LRM1995b Serial 1558  
Permanent link to this record
 

 
Author Josep Llados; Jaime Lopez-Krahe; Enric Marti edit   pdf
doi  openurl
  Title A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform Type Book Chapter
  Year 1997 Publication Machine Vision and Applications Abbreviated Journal  
  Volume 10 Issue 3 Pages 150-158  
  Keywords Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition  
  Abstract Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM Approved no  
  Call Number IAM @ iam @ LLM1997a Serial 1566  
Permanent link to this record
 

 
Author Ferran Poveda edit  openurl
  Title Computer Graphics and Vision Techniques for the Study of the Muscular Fiber Architecture of the Myocardium Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Pov2013 Serial 2417  
Permanent link to this record
 

 
Author Debora Gil; F. Javier Sanchez; Gloria Fernandez-Esparrach; Jorge Bernal edit   pdf
doi  openurl
  Title 3D Stable Spatio-temporal Polyp Localization in Colonoscopy Videos Type Book Chapter
  Year 2015 Publication Computer-Assisted and Robotic Endoscopy. Revised selected papers of Second International Workshop, CARE 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9515 Issue Pages 140-152  
  Keywords Colonoscopy, Polyp Detection, Polyp Localization, Region Extraction, Watersheds  
  Abstract Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select
those image regions presenting the highest stable spatio-temporal response.
Spatio-temporal stability is achieved by extracting 3D watershed regions on the
temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of 21:5% in polyp localization and 43:78% in polyp detection.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARE  
  Notes IAM; MV; 600.075 Approved no  
  Call Number Admin @ si @ GSF2015 Serial 2733  
Permanent link to this record
 

 
Author H. Martin ; Jens Fagertun; Sergio Vera; Debora Gil edit   pdf
openurl 
  Title Medial structure generation for registration of anatomical structures Type Book Chapter
  Year 2017 Publication Skeletonization, Theory, Methods and Applications Abbreviated Journal  
  Volume 11 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ MFV2017a Serial 2935  
Permanent link to this record
 

 
Author Enric Marti; Jordi Vitria; Alberto Sanfeliu edit   pdf
isbn  openurl
  Title Reconocimiento de Formas y Análisis de Imágenes Type Book Whole
  Year 1998 Publication Asociación Española de Reconocimientos de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los sistemas actuales de reconocimiento automático del lenguaje oral se basan en dos etapas básicas de procesado: la parametrización, que extrae la evolución temporal de los parámetros que caracterizan la voz, y el reconocimiento propiamente dicho, que identifica la cadena de palabras de la elocución recibida con ayuda de los modelos que representan el conocimiento adquirido en la etapa de aprendizaje. Tomando como línea divisoria la palabra, dichos modelos son de tipo acústicofonético o gramatical. Los primeros caracterizan las palabras incluidas en el vocabulario de la aplicación o tarea a la que está orientado el sistema de reconocimiento, usando a menudo para ello modelos de unidades de habla de extensión inferior a la palabra, es decir, de unidades subléxicas. Por otro lado, la gramática incluye el conocimiento acerca de las combinaciones permitidas de palabras para formar las frases o su probabilidad. Queda fuera del esquema la denominada comprensión del habla, que utiliza adicionalmente el conocimiento semántico y pragmático para captar el significado de la elocución de entrada al sistema a partir de la cadena (o cadenas alternativas) de palabras que suministra el reconocedor.  
  Address  
  Corporate Author Thesis  
  Publisher (up) AERFAI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84–922529–4–4 Medium  
  Area Expedition Conference  
  Notes IAM;OR;MV Approved no  
  Call Number IAM @ iam @ MVS1998 Serial 1620  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Carles Sanchez edit  isbn
openurl 
  Title Tracheal Structure Characterization using Geometric and Appearance Models for Efficient Assessment of Stenosis in Videobronchoscopy Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent advances in endoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures. Among all endoscopic modalities, bronchoscopy is one of the most frequent with around 261 millions of procedures per year. Although the use of bronchoscopy is spread among clinical facilities it presents some drawbacks, being the visual inspection for the assessment of anatomical measurements the most prevalent of them. In
particular, inaccuracies in the estimation of the degree of stenosis (the percentage of obstructed airway) decreases its diagnostic yield and might lead to erroneous treatments. An objective computation of tracheal stenosis in bronchoscopy videos would constitute a breakthrough for this non-invasive technique and a reduction in treatment cost.
This thesis settles the first steps towards on-line reliable extraction of anatomical information from videobronchoscopy for computation of objective measures. In particular, we focus on the computation of the degree of stenosis, which is obtained by comparing the area delimited by a healthy tracheal ring and the stenosed lumen. Reliable extraction of airway structures in interventional videobronchoscopy is a challenging task. This is mainly due to the large variety of acquisition conditions (positions and illumination), devices (different digitalizations) and in videos acquired at the operating room the unpredicted presence of surgical devices (such as probe ends). This thesis contributes to on-line stenosis assessment in several ways. We
propose a parametric strategy for the extraction of lumen and tracheal rings regions based on the characterization of their geometry and appearance that guide a deformable model. The geometric and appearance characterization is based on a physical model describing the way bronchoscopy images are obtained and includes local and global descriptions. In order to ensure a systematic applicability we present a statistical framework to select the optimal
parameters of our method. Experiments perform on the first public annotated database, show that the performance of our method is comparable to the one provided by clinicians and its computation time allows for a on-line implementation in the operating room.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Ediciones Graficas Rey Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-9-5 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ San2014 Serial 2575  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: