toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Patricia Marquez edit  isbn
openurl 
  Title A Confidence Framework for the Assessment of Optical Flow Performance Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Optical Flow (OF) is the input of a wide range of decision support systems such as car driver assistance, UAV guiding or medical diagnose. In these real situations, the absence of ground truth forces to assess OF quality using quantities computed from either sequences or the computed optical flow itself. These quantities are generally known as Confidence Measures, CM. Even if we have a proper confidence measure we still need a way to evaluate its ability to discard pixels with an OF prone to have a large error. Current approaches only provide a descriptive evaluation of the CM performance but such approaches are not capable to fairly compare different confidence measures and optical flow algorithms. Thus, it is of prime importance to define a framework and a general road map for the evaluation of optical flow performance.

This thesis provides a framework able to decide which pairs “ optical flow – confidence measure” (OF-CM) are best suited for optical flow error bounding given a confidence level determined by a decision support system. To design this framework we cover the following points:

Descriptive scores. As a first step, we summarize and analyze the sources of inaccuracies in the output of optical flow algorithms. Second, we present several descriptive plots that visually assess CM capabilities for OF error bounding. In addition to the descriptive plots, given a plot representing OF-CM capabilities to bound the error, we provide a numeric score that categorizes the plot according to its decreasing profile, that is, a score assessing CM performance.
Statistical framework. We provide a comparison framework that assesses the best suited OF-CM pair for error bounding that uses a two stage cascade process. First of all we assess the predictive value of the confidence measures by means of a descriptive plot. Then, for a sample of descriptive plots computed over training frames, we obtain a generic curve that will be used for sequences with no ground truth. As a second step, we evaluate the obtained general curve and its capabilities to really reflect the predictive value of a confidence measure using the variability across train frames by means of ANOVA.

The presented framework has shown its potential in the application on clinical decision support systems. In particular, we have analyzed the impact of the different image artifacts such as noise and decay to the output of optical flow in a cardiac diagnose system and we have improved the navigation inside the bronchial tree on bronchoscopy.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Aura Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-2-1 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Mar2015 Serial 2687  
Permanent link to this record
 

 
Author Debora Gil edit   pdf
isbn  openurl
  Title Geometric Differential Operators for Shape Modelling Type Book Whole
  Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84-933652-0-3 Medium prit  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GIL2004 Serial 1517  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru ; Miguel A. Gonzalez Ballester edit   pdf
doi  isbn
openurl 
  Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Book Chapter
  Year 2012 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal  
  Volume 7029 Issue Pages 223–230  
  Keywords medial manifolds, abdomen.  
  Abstract (down) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D
objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial
manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our
method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs,
exploring the use of medial manifolds for the representation of multi-organ relations.
 
  Address Toronto; Canada;  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Berlin Editor H. Yoshida et al  
  Language English Summary Language English Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-28556-1 Medium  
  Area Expedition Conference ABDI  
  Notes IAM;MV Approved no  
  Call Number IAM @ iam @ VGB2012 Serial 1834  
Permanent link to this record
 

 
Author Sergio Vera; Miguel A. Gonzalez Ballester; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title Optimal Medial Surface Generation for Anatomical Volume Representations Type Book Chapter
  Year 2012 Publication Abdominal Imaging. Computational and Clinical Applications Abbreviated Journal LNCS  
  Volume 7601 Issue Pages 265-273  
  Keywords Medial surface representation; volume reconstruction  
  Abstract (down) Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial
surface used to parametrize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial
surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction.
This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.
 
  Address Nice, France  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Yoshida, Hiroyuki and Hawkes, David and Vannier, MichaelW.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-33611-9 Medium  
  Area Expedition Conference STACOM  
  Notes IAM Approved no  
  Call Number IAM @ iam @ VGG2012b Serial 1988  
Permanent link to this record
 

 
Author Enric Marti; Jordi Vitria; Alberto Sanfeliu edit   pdf
isbn  openurl
  Title Reconocimiento de Formas y Análisis de Imágenes Type Book Whole
  Year 1998 Publication Asociación Española de Reconocimientos de Formas y Análisis de Imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Los sistemas actuales de reconocimiento automático del lenguaje oral se basan en dos etapas básicas de procesado: la parametrización, que extrae la evolución temporal de los parámetros que caracterizan la voz, y el reconocimiento propiamente dicho, que identifica la cadena de palabras de la elocución recibida con ayuda de los modelos que representan el conocimiento adquirido en la etapa de aprendizaje. Tomando como línea divisoria la palabra, dichos modelos son de tipo acústicofonético o gramatical. Los primeros caracterizan las palabras incluidas en el vocabulario de la aplicación o tarea a la que está orientado el sistema de reconocimiento, usando a menudo para ello modelos de unidades de habla de extensión inferior a la palabra, es decir, de unidades subléxicas. Por otro lado, la gramática incluye el conocimiento acerca de las combinaciones permitidas de palabras para formar las frases o su probabilidad. Queda fuera del esquema la denominada comprensión del habla, que utiliza adicionalmente el conocimiento semántico y pragmático para captar el significado de la elocución de entrada al sistema a partir de la cadena (o cadenas alternativas) de palabras que suministra el reconocedor.  
  Address  
  Corporate Author Thesis  
  Publisher AERFAI Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 84–922529–4–4 Medium  
  Area Expedition Conference  
  Notes IAM;OR;MV Approved no  
  Call Number IAM @ iam @ MVS1998 Serial 1620  
Permanent link to this record
 

 
Author Misael Rosales; Petia Radeva; Oriol Rodriguez; Debora Gil edit   pdf
doi  openurl
  Title Suppression of IVUS Image Rotation. A Kinematic Approach Type Book Chapter
  Year 2005 Publication Functional Imaging and Modeling of the Heart Abbreviated Journal LNCS  
  Volume 3504 Issue Pages 889-892  
  Keywords  
  Abstract (down) IntraVascular Ultrasound (IVUS) is an exploratory technique used in interventional procedures that shows cross section images of arteries and provides qualitative information about the causes and severity of the arterial lumen narrowing. Cross section analysis as well as visualization of plaque extension in a vessel segment during the catheter imaging pullback are the technique main advantages. However, IVUS sequence exhibits a periodic rotation artifact that makes difficult the longitudinal lesion inspection and hinders any segmentation algorithm. In this paper we propose a new kinematic method to estimate and remove the image rotation of IVUS images sequences. Results on several IVUS sequences show good results and prompt some of the clinical applications to vessel dynamics study, and relation to vessel pathology.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Frangi, Alejandro and Radeva, Petia and Santos, Andres and Hernandez, Monica  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume 3504 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RRR2005 Serial 1645  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Endowing Canonical Geometries to Cardiac Structures Type Book Chapter
  Year 2010 Publication Statistical Atlases And Computational Models Of The Heart Abbreviated Journal  
  Volume 6364 Issue Pages 124-133  
  Keywords  
  Abstract (down) International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010b Serial 1515  
Permanent link to this record
 

 
Author Sergio Vera edit  isbn
openurl 
  Title Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Miguel Angel Gonzalez Ballester  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-8-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Ver2015 Serial 2708  
Permanent link to this record
 

 
Author Fernando Vilariño; Debora Gil; Petia Radeva edit   pdf
url  isbn
openurl 
  Title A Novel FLDA Formulation for Numerical Stability Analysis Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 113 Issue Pages 77-84  
  Keywords Supervised Learning; Linear Discriminant Analysis; Numerical Stability; Computer Vision  
  Abstract (down) Fisher Linear Discriminant Analysis (FLDA) is one of the most popular techniques used in classification applying dimensional reduction. The numerical scheme involves the inversion of the within-class scatter matrix, which makes FLDA potentially ill-conditioned when it becomes singular. In this paper we present a novel explicit formulation of FLDA in terms of the eccentricity ratio and eigenvector orientations of the within-class scatter matrix. An analysis of this function will characterize those situations where FLDA response is not reliable because of numerical instability. This can solve common situations of poor classification performance in computer vision.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor J. Vitrià, P. Radeva and I. Aguiló  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-58603-466-5 Medium  
  Area Expedition Conference  
  Notes MV;IAM;MILAB Approved no  
  Call Number IAM @ iam @ VGR2004 Serial 1663  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit  doi
isbn  openurl
  Title Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? Type Book Chapter
  Year 2014 Publication G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology Abbreviated Journal  
  Volume 796 Issue 3 Pages 159-181  
  Keywords β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model  
  Abstract (down) Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0065-2598 ISBN 978-94-007-7422-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number IAM @ iam @ RGG2014 Serial 2197  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: