toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Aura Hernandez-Sabate; Oriol Rodriguez; J. Mauri; Petia Radeva edit   pdf
doi  openurl
  Title Statistical Strategy for Anisotropic Adventitia Modelling in IVUS Type Journal Article
  Year 2006 Publication IEEE Transactions on Medical Imaging Abbreviated Journal  
  Volume 25 Issue 6 Pages 768-778  
  Keywords (up) Corners; T-junctions; Wavelets  
  Abstract Vessel plaque assessment by analysis of intravascular ultrasound sequences is a useful tool for cardiac disease diagnosis and intervention. Manual detection of luminal (inner) and mediaadventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts, and blurred signal response due to ultrasound physical properties trouble automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of interobserver variability regardless of plaque nature, vessel geometry, and incomplete vessel borders. Index Terms–-Anisotropic processing, intravascular ultrasound (IVUS), vessel border segmentation, vessel structure classification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GHR2006 Serial 1525  
Permanent link to this record
 

 
Author Debora Gil; Antonio Esteban Lansaque; Sebastian Stefaniga; Mihail Gaianu; Carles Sanchez edit   pdf
url  openurl
  Title Data Augmentation from Sketch Type Conference Article
  Year 2019 Publication International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging Abbreviated Journal  
  Volume 11840 Issue Pages 155-162  
  Keywords (up) Data augmentation; cycleGANs; Multi-objective optimization  
  Abstract State of the art machine learning methods need huge amounts of data with unambiguous annotations for their training. In the context of medical imaging this is, in general, a very difficult task due to limited access to clinical data, the time required for manual annotations and variability across experts. Simulated data could serve for data augmentation provided that its appearance was comparable to the actual appearance of intra-operative acquisitions. Generative Adversarial Networks (GANs) are a powerful tool for artistic style transfer, but lack a criteria for selecting epochs ensuring also preservation of intra-operative content.

We propose a multi-objective optimization strategy for a selection of cycleGAN epochs ensuring a mapping between virtual images and the intra-operative domain preserving anatomical content. Our approach has been applied to simulate intra-operative bronchoscopic videos and chest CT scans from virtual sketches generated using simple graphical primitives.
 
  Address Shenzhen; China; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLIP  
  Notes IAM; 600.145; 601.337; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GES2019 Serial 3359  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate edit   pdf
url  openurl
  Title Decremental generalized discriminative common vectors applied to images classification Type Journal Article
  Year 2017 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 131 Issue Pages 46-57  
  Keywords (up) Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification  
  Abstract In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118; 600.121;IAM Approved no  
  Call Number Admin @ si @ DMH2017a Serial 3003  
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume 23 Issue 8 Pages 681-691  
  Keywords (up) Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit   pdf
doi  isbn
openurl 
  Title Detecting loss of diversity for an efficient termination of EAs Type Conference Article
  Year 2013 Publication 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing Abbreviated Journal  
  Volume Issue Pages 561 - 566  
  Keywords (up) EA termination; EA population diversity; EA steady state  
  Abstract Termination of Evolutionary Algorithms (EA) at its steady state so that useless iterations are not performed is a main point for its efficient application to black-box problems. Many EA algorithms evolve while there is still diversity in their population and, thus, they could be terminated by analyzing the behavior some measures of EA population diversity. This paper presents a numeric approximation to steady states that can be used to detect the moment EA population has lost its diversity for EA termination. Our condition has been applied to 3 EA paradigms based on diversity and a selection of functions
covering the properties most relevant for EA convergence.
Experiments show that our condition works regardless of the search space dimension and function landscape.
 
  Address Timisoara; Rumania;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3035-7 Medium  
  Area Expedition Conference SYNASC  
  Notes IAM; 600.044; 600.060; 605.203 Approved no  
  Call Number Admin @ si @ RGG2013c Serial 2299  
Permanent link to this record
 

 
Author Debora Gil; Jose Maria-Carazo; Roberto Marabini edit   pdf
doi  openurl
  Title On the nature of 2D crystal unbending Type Journal Article
  Year 2006 Publication Journal of Structural Biology Abbreviated Journal  
  Volume 156 Issue 3 Pages 546-555  
  Keywords (up) Electron microscopy  
  Abstract Crystal unbending, the process that aims to recover a perfect crystal from experimental data, is one of the more important steps in electron crystallography image processing. The unbending process involves three steps: estimation of the unit cell displacements from their ideal positions, extension of the deformation field to the whole image and transformation of the image in order to recover an ideal crystal. In this work, we present a systematic analysis of the second step oriented to address two issues. First, whether the unit cells remain undistorted and only the distance between them should be changed (rigid case) or should be modified with the same deformation suffered by the whole crystal (elastic case). Second, the performance of different extension algorithms (interpolation versus approximation) is explored. Our experiments show that there is no difference between elastic and rigid cases or among the extension algorithms. This implies that the deformation fields are constant over large areas. Furthermore, our results indicate that the main source of error is the transformation of the crystal image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1047-8477 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GCM2006 Serial 1519  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva edit   pdf
openurl 
  Title A Deterministic-Statistic Adventitia Detection in IVUS Images Type Conference Article
  Year 2005 Publication ESC Congress Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up) Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation  
  Abstract Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.  
  Address Stockholm; Sweden; September 2005  
  Corporate Author Thesis  
  Publisher Place of Publication ,Sweden (EU) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ESC  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RMF2005a Serial 1523  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Antoni Carol; Oriol Rodriguez; Petia Radeva edit   pdf
doi  openurl
  Title A Deterministic-Statistic Adventitia Detection in IVUS Images Type Conference Article
  Year 2005 Publication 3rd International workshop on International Workshop on Functional Imaging and Modeling of the Heart Abbreviated Journal  
  Volume Issue Pages 65-74  
  Keywords (up) Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation  
  Abstract Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.  
  Address Barcelona; June 2005  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FIMH  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RMF2005 Serial 1524  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords (up) Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author Debora Gil; David Roche; Agnes Borras; Jesus Giraldo edit  doi
openurl 
  Title Terminating Evolutionary Algorithms at their Steady State Type Journal Article
  Year 2015 Publication Computational Optimization and Applications Abbreviated Journal COA  
  Volume 61 Issue 2 Pages 489-515  
  Keywords (up) Evolutionary algorithms; Termination condition; Steady state; Differential evolution  
  Abstract Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-6003 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.044; 605.203; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ GRB2015 Serial 2560  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: