toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Carles Sanchez;F. Javier Sanchez; Antoni Rosell; Debora Gil edit   pdf
url  doi
isbn  openurl
  Title An illumination model of the trachea appearance in videobronchoscopy images Type Book Chapter
  Year 2012 Publication Image Analysis and Recognition Abbreviated Journal LNCS  
  Volume 7325 Issue Pages 313-320  
  Keywords (down) Bronchoscopy, tracheal ring, stenosis assesment, trachea appearance model, segmentation  
  Abstract Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways. This imaging modality provides realistic images and allows non-invasive minimal intervention procedures. Tracheal procedures are routinary interventions that require assessment of the percentage of obstructed pathway for injury (stenosis) detection. Visual assessment in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error.
This paper introduces an automatic method for the estimation of steneosed trachea percentage reduction in videobronchoscopic images. We look for tracheal rings , whose deformation determines the degree of obstruction. For ring extraction , we present a ring detector based on an illumination and appearance model. This model allows us to parametrise the ring detection. Finally, we can infer optimal estimation parameters for any video resolution.
 
  Address Aveiro, Portugal  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-31297-7 Medium  
  Area 800 Expedition Conference ICIAR  
  Notes MV;IAM Approved no  
  Call Number IAM @ iam @ SSR2012 Serial 1898  
Permanent link to this record
 

 
Author Carles Sanchez edit   pdf
openurl 
  Title Tracheal ring detection in bronchoscopy Type Report
  Year 2011 Publication CVC Technical Report Abbreviated Journal  
  Volume 168 Issue Pages  
  Keywords (down) Bronchoscopy, tracheal ring, segmentation  
  Abstract Endoscopy is the process in which a camera is introduced inside a human.
Given that endoscopy provides realistic images (in contrast to other modalities) and allows non-invase minimal intervention procedures (which can aid in diagnosis and surgical interventions), its use has spreaded during last decades.
In this project we will focus on bronchoscopic procedures, during which the camera is introduced through the trachea in order to have a diagnostic of the patient. The diagnostic interventions are focused on: degree of stenosis (reduction in tracheal area), prosthesis or early diagnosis of tumors. In the first case, assessment of the luminal area and the calculation of the diameters of the tracheal rings are required. A main limitation is that all the process is done by hand,
which means that the doctor takes all the measurements and decisions just by looking at the screen. As far as we know there is no computational framework for helping the doctors in the diagnosis.
This project will consist of analysing bronchoscopic videos in order to extract useful information for the diagnostic of the degree of stenosis. In particular we will focus on segmentation of the tracheal rings. As a result of this project several strategies (for detecting tracheal rings) had been implemented in order to compare their performance.
 
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor Debora Gil, F.Javier Sanchez  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MV Approved no  
  Call Number IAM @ iam @ San2011 Serial 1841  
Permanent link to this record
 

 
Author Carles Sanchez; Debora Gil; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell edit   pdf
openurl 
  Title Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches Type Conference Article
  Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops Abbreviated Journal  
  Volume 9401 Issue Pages 62-70  
  Keywords (down) Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy  
  Abstract Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface.  
  Address Quebec; Canada; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; MV; 600.060; 600.075 Approved no  
  Call Number Admin @ si @ SGB2016 Serial 2885  
Permanent link to this record
 

 
Author Spyridon Bakas; Mauricio Reyes; Andras Jakab; Stefan Bauer; Markus Rempfler; Alessandro Crimi; Russell Takeshi Shinohara; Christoph Berger; Sung Min Ha; Martin Rozycki; Marcel Prastawa; Esther Alberts; Jana Lipkova; John Freymann; Justin Kirby; Michel Bilello; Hassan Fathallah-Shaykh; Roland Wiest; Jan Kirschke; Benedikt Wiestler; Rivka Colen; Aikaterini Kotrotsou; Pamela Lamontagne; Daniel Marcus; Mikhail Milchenko; Arash Nazeri; Marc-Andre Weber; Abhishek Mahajan; Ujjwal Baid; Dongjin Kwon; Manu Agarwal; Mahbubul Alam; Alberto Albiol; Antonio Albiol; Varghese Alex; Tuan Anh Tran; Tal Arbel; Aaron Avery; Subhashis Banerjee; Thomas Batchelder; Kayhan Batmanghelich; Enzo Battistella; Martin Bendszus; Eze Benson; Jose Bernal; George Biros; Mariano Cabezas; Siddhartha Chandra; Yi-Ju Chang; Joseph Chazalon; Shengcong Chen; Wei Chen; Jefferson Chen; Kun Cheng; Meinel Christoph; Roger Chylla; Albert Clérigues; Anthony Costa; Xiaomeng Cui; Zhenzhen Dai; Lutao Dai; Eric Deutsch; Changxing Ding; Chao Dong; Wojciech Dudzik; Theo Estienne; Hyung Eun Shin; Richard Everson; Jonathan Fabrizio; Longwei Fang; Xue Feng; Lucas Fidon; Naomi Fridman; Huan Fu; David Fuentes; David G Gering; Yaozong Gao; Evan Gates; Amir Gholami; Mingming Gong; Sandra Gonzalez-Villa; J Gregory Pauloski; Yuanfang Guan; Sheng Guo; Sudeep Gupta; Meenakshi H Thakur; Klaus H Maier-Hein; Woo-Sup Han; Huiguang He; Aura Hernandez-Sabate; Evelyn Herrmann; Naveen Himthani; Winston Hsu; Cheyu Hsu; Xiaojun Hu; Xiaobin Hu; Yan Hu; Yifan Hu; Rui Hua edit  openurl
  Title Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) BraTS; challenge; brain; tumor; segmentation; machine learning; glioma; glioblastoma; radiomics; survival; progression; RECIST  
  Abstract Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multiparametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in preoperative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118;MILAB;IAM Approved no  
  Call Number Admin @ si @ BRJ2018 Serial 3252  
Permanent link to this record
 

 
Author Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska edit   pdf
url  openurl
  Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
  Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal  
  Volume 11384 Issue Pages 393-405  
  Keywords (down) Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution  
  Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ADAS; 600.118;IAM Approved no  
  Call Number Admin @ si @ PSH2018 Serial 3251  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages  
  Keywords (down) Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
 

 
Author David Castells; Vinh Ngo; Juan Borrego-Carazo; Marc Codina; Carles Sanchez; Debora Gil; Jordi Carrabina edit  doi
openurl 
  Title A Survey of FPGA-Based Vision Systems for Autonomous Cars Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACESS  
  Volume 10 Issue Pages 132525-132563  
  Keywords (down) Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures  
  Abstract On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges.  
  Address 16 December 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.166 Approved no  
  Call Number Admin @ si @ CNB2022 Serial 3760  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Carme Julia edit   pdf
openurl 
  Title Una experiència en PBL per a la docència de Gràfics per Computador Type Miscellaneous
  Year 2005 Publication II Jornades d’innovació Docent Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Aprenentatge Basat en Projectes; Aprenentatge Basat en Problemes; Problem Based Learning; ECTS; EEES; Computer Graphics; OpenGL.  
  Abstract En aquest article es presenta una experiència en ABP feta el curs 2004-05 en Gràfics per Computador 2, assignatura optativa de 3er curs d’Enginyeria Informàtica impartida a l’ETSE. En l’article s’explica l’organització docent abans d’ABP, basada en classes magistrals. Després es mostra l’organització en ABP i es quantifica en ECTS l’esforç de l’alumne en ambdues organitzacions. Essent conscient del diferent interès de l’alumnat per l’assignatura, se’ls hi ofereix dos itineraris: el de classes magistrals i d’ABP. Es mostren alguns resultats dels alumnes d’ABP i també les primeres enquestes realitzades als alumnes. S’exposen les conclusions en el primer any de l’experiència, plantejant temes de discussió. S’ha procurat que la proposta no desbordi l’esforç del professorat. Per això s’ofereix el doble itinerari, per a canalitzar per ABP els alumnes més interessats i permetre a la resta que realitzin el curs amb l’organització clàsica de l’assignatura: classes magistrals de teoria, problemes i pràctiques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGJ2005c Serial 1594  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Marc Vivet ; Carme Julia edit   pdf
openurl 
  Title Balance de cuatro años de experiencia en la implantación de la metodología de Aprendizaje Basado en Proyectos en la asignatura de Gráficos por Computador en ingeniería Informática Type Miscellaneous
  Year 2008 Publication Actas V Jornadas Internacionales de Innovación Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Aprendizaje cooperativo; aprendizaje basado en proyectos; experiencias docentes.  
  Abstract En este trabajo se presentan los resultados de la aplicación de la metodología del aprendizaje cooperativo a la docencia de dos asignaturas de programación en ingeniería informática. ‘Algoritmos y programación’ y ‘Lenguajes de programación’ son dos asignaturas complementarias que se organizan entorno a un proyecto común que engloba los contenidos de ambas asignaturas. En la docencia de una parte muy importante de estas asignaturas, la metodología del aprendizaje cooperativo se ha adaptado a sus características específicas. Como muestra de esta adaptación presentamos dos ejemplos de las actividades desarrolladas dentro de la docencia de estas asignaturas. Después de tres años de aplicación, el análisis a nivel cualitativo y cuantitativo de los resultados muestra que éstos son muy satisfactorios y que la aplicación del método cooperativo ha mejorado de forma considerable el rendimiento de los alumnos en ambas asignaturas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ MGV2008a Serial 1598  
Permanent link to this record
 

 
Author Enric Marti; Jaume Rocarias; Debora Gil; Aura Hernandez-Sabate; Jaume Garcia; Carme Julia; Marc Vivet edit   pdf
openurl 
  Title Uso de recursos virtuales en Aprendizaje Basado en Proyectos. Una experiencia en la asignatura de Gráficos por Computador Type Miscellaneous
  Year 2009 Publication I Congreso de Docencia Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords (down) Aprendizaje Basado en Proyectos; Project Based Learning; Aprendizaje Cooperativo; Recursos Virtuales para el Aprendizaje Cooperativo; Moodle  
  Abstract Presentamos una experiencia en Aprendizaje Basado en Proyectos (ABP) realizada los últimos cuatro años en Gráficos por Computador 2, asignatura de Ingeniería Informática, de la Escuela Técnica Superior de Ingeniería (ETSE) de la Universidad Autónoma de Barcelona (UAB). Utilizamos un entorno Moodle adaptado por nosotros llamado Caronte para poder gestionar la documentación generada en ABP. Primero se presenta la asignatura, basada en dos itinerarios para cursarla: ABP y TPPE (Teoría, Problemas, Prácticas, Examen). El alumno debe escoger uno de ellos. Ambos itinerarios generan una cantidad importante de documentación (entregas de trabajos y prácticas, correcciones, ejercicios, etc.) a gestionar. En la comunicación presentamos los espacios electrónicos Moodle de ambos itinerarios. Finalmente, mostramos los resultados de encuestas realizadas a los alumnos para finalmente exponer las conclusiones de la experiencia en ABP y el uso de Moodle, así como plantear mejoras y temas de discusión.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vigo (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MRG2009a Serial 1602  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: