|
Abstract |
Endoscopy is the process in which a camera is introduced inside a human.
Given that endoscopy provides realistic images (in contrast to other modalities) and allows non-invase minimal intervention procedures (which can aid in diagnosis and surgical interventions), its use has spreaded during last decades.
In this project we will focus on bronchoscopic procedures, during which the camera is introduced through the trachea in order to have a diagnostic of the patient. The diagnostic interventions are focused on: degree of stenosis (reduction in tracheal area), prosthesis or early diagnosis of tumors. In the first case, assessment of the luminal area and the calculation of the diameters of the tracheal rings are required. A main limitation is that all the process is done by hand,
which means that the doctor takes all the measurements and decisions just by looking at the screen. As far as we know there is no computational framework for helping the doctors in the diagnosis.
This project will consist of analysing bronchoscopic videos in order to extract useful information for the diagnostic of the degree of stenosis. In particular we will focus on segmentation of the tracheal rings. As a result of this project several strategies (for detecting tracheal rings) had been implemented in order to compare their performance. |
|