toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Francesco Brughi edit  openurl
  Title Artistic Heritage Motive Retrieval: an Explorative Study Type Report
  Year 2013 Publication CVC Technical Report Abbreviated Journal  
  Volume 176 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ Bru2013 Serial 2410  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit  openurl
  Title A benchmark for the evaluation of computational methods for bronchoscopic navigation Type Journal Article
  Year 2022 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCARS  
  Volume 17 Issue 1 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ BSC2022 Serial 3832  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit   pdf
doi  openurl
  Title BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Journal Article
  Year 2023 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB  
  Volume 228 Issue Pages 107241  
  Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation  
  Abstract Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number (up) Admin @ si @ BSC2023 Serial 3702  
Permanent link to this record
 

 
Author Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Debora Gil; Cristina Rodriguez de Miguel; Fernando Vilariño edit   pdf
doi  openurl
  Title WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation vs. Saliency Maps from Physicians Type Journal Article
  Year 2015 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 43 Issue Pages 99-111  
  Keywords Polyp localization; Energy Maps; Colonoscopy; Saliency; Valley detection  
  Abstract We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WMDOVA1 energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-6111 ISBN Medium  
  Area Expedition Conference  
  Notes MV; IAM; 600.047; 600.060; 600.075;SIAI Approved no  
  Call Number (up) Admin @ si @ BSF2015 Serial 2609  
Permanent link to this record
 

 
Author Pau Cano; Alvaro Caravaca; Debora Gil; Eva Musulen edit   pdf
url  openurl
  Title Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages 107241  
  Keywords  
  Abstract This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ CCG2023 Serial 3855  
Permanent link to this record
 

 
Author Pau Cano; Debora Gil; Eva Musulen edit  openurl
  Title Towards automatic detection of helicobacter pylori in histological samples of gastric tissue Type Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ CGM2023 Serial 3953  
Permanent link to this record
 

 
Author David Castells; Vinh Ngo; Juan Borrego-Carazo; Marc Codina; Carles Sanchez; Debora Gil; Jordi Carrabina edit  doi
openurl 
  Title A Survey of FPGA-Based Vision Systems for Autonomous Cars Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACESS  
  Volume 10 Issue Pages 132525-132563  
  Keywords Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures  
  Abstract On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges.  
  Address 16 December 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.166 Approved no  
  Call Number (up) Admin @ si @ CNB2022 Serial 3760  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title An overview of incremental feature extraction methods based on linear subspaces Type Journal Article
  Year 2018 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 145 Issue Pages 219-235  
  Keywords  
  Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-7051 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118;IAM Approved no  
  Call Number (up) Admin @ si @ DFH2018 Serial 3090  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso; Vanesa Vicens; Cubero Noelia; Rosa Lopez Lisbona; Carles Sanchez; Agnes Borras; Antoni Rosell edit  url
openurl 
  Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
  Year 2016 Publication Chest Journal Abbreviated Journal CHEST  
  Volume 150 Issue 4 Pages 1003A  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075 Approved no  
  Call Number (up) Admin @ si @ DGC2016 Serial 3099  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso edit  url
openurl 
  Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
  Year 2017 Publication Journal of Thoracic Oncology Abbreviated Journal JTO  
  Volume 12 Issue 1S Pages S596-S597  
  Keywords Thorax CT; diagnosis; Peripheral Pulmonary Nodule  
  Abstract A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 600.145 Approved no  
  Call Number (up) Admin @ si @ DGC2017a Serial 2883  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: