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Abstract 
 

We introduce in this paper a novel polyp localization method for colonoscopy 
videos. Our method is based on a model of appearance for polyps which defines 
polyp boundaries in terms of valley information. We propose the integration of 
valley information in a robust way fostering complete, concave and continuous 
boundaries typically associated to polyps. This integration is done by using a 
window of radial sectors which accumulate valley information to create WM-
DOVA1

 energy maps related with the likelihood of polyp presence. We perform a 
double validation of our maps, which include the introduction of two new 
databases, including the first, up to our knowledge, fully annotated database with 
clinical metadata associated. First we assess that the highest value corresponds 
with the location of the polyp in the image. Second, we show that WM-DOVA 
energy maps can be comparable with saliency maps obtained from physicians’ 
fixations obtained via an eye-tracker. Finally, we prove that our method 
outperforms state-of-the-art computational saliency results. Our method shows 
good performance, particularly for small polyps which are reported to be the 
main sources of polyp miss-rate, which indicates the potential applicability of our 
method in clinical practice. 
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1.  INTRODUCTION 

 

 1.1. Introduction to Intelligent Systems for Colonoscopy 

 Colon cancer is nowadays the fourth cause of cancer death worldwide. In 
2012, an estimated number of 746.298 cases were diagnosed with colorectal 
cancer (CRC) and a total number of 373.631 died of the disease [1]. CRC’s 
survival rate depends on the stage it is detected on, going from rates higher 
than 95% in early stages to rates lower than 35% in latter ones [2], hence the 
necessity of an early colon screening. 
 Clinical guidelines based on scientific evidence recommend screening 
with colonoscopy which allows the identification and removal of polyps, which 
are the first step in the sequence ‘adenoma’–‘high grade dysplasia’–‘carcinoma’, 
leading to the development of CRC [3, 4]. Conventional colonoscopy is currently 
the most precise procedure for early CRC detection and prevention, 
demonstrating several prospective studies with a large number of cases that 
conventional colonoscopy with polypectomy reduces CRC’s incidence by 
40−90% [5, 6]. However, colonoscopy presents some drawbacks being polyp 
miss-rate the most relevant -reported to be as high as 22% [7]-, resulting in a 
lack of total effectiveness of colonoscopy [8]. The miss-rate increases 
significantly in smaller sized polyps (2% for adenomas ≥ 10 mm versus 26% for 
adenomas < 5 mm) [9] and this is meaningful in clinical practice because the 
prevalence of high grade dysplasia among patients with adenomas is related to 
the polyp size, with figures that vary from 50% in adenomas larger than 10 mm 
to 16% in adenomas between 6 and 9 mm [10]. 
 Other alternatives proposed for CRC screening are colon capsule 
endoscopy and CT colonography but they present a lower accuracy for small 
polyps detection and do not allow to obtain histological confirmation. These 
data reinforce the need to improve the detection rate of polyps at colonoscopy 
in order to be able to remove all small adenomas. 
 In this sense, there has been an increasing effort during last years on 
exploring the use of intelligent systems to provide additional information to the 
output of colonoscopy [11], including the task of automatic polyp localization. 
The contributions of this paper go in this direction and they are two-fold: 1) The 
introduction of Window Median Depth of Valley Accumulation (WM-DOVA) 
energy maps as a tool for automatic polyp localization in colonoscopy images, 
and 2) the definition of the, up to our knowledge, first validation framework 
over a fully annotated database and over visual saliency maps created from 
physicians’ fixations obtained via an eye-tracker device and state-of-the-art 
computational saliency models. Two new databases are introduced: 1) CVC-
ClinicDB which is the only fully annotated database with clinical metadata 
associated and 2) CVC-EyeTrackerDB which contains annotations of polyps 
throughout all the frames in the sequence and information about physicians’ 
fixations when observing these sequences. 



 

 Our polyp localization method takes as input a colonoscopy frame, and it 
offers as output image an energy map in which high energy concentration is 
related with high likelihood of polyp presence. Our method is based on a model 
of appearance for polyps, which characterizes polyp boundaries by using valley 
information. The energy maps obtained by our method are validated in two 
ways: 1) We check whether the maximum of the maps coincides with the polyp 
location in the image, and 2) we assess whether their energy distribution has 
correspondence with visual saliency models from physicians fixations and state-
of-the-art saliency models. As our method is based on valley information 
associated to polyp boundaries, our model also considers the impact of 
different elements of the scene with valley information associated. In the next 
subsection we make a review of existing methods on the characterization of 
different elements of the endoluminal scene. 
 
1.2. Related Work on Endoluminal Scene Characterization 
 
 The different elements that appear on the endoluminal scene are: 1) 
Lumen; 2) Wrinkles and Folds; 3) Blood vessels; 4) Polyps; 5) Fecal content, and 
6) Specular highlights [11]. We focus our review on available methods for polyp 
localization, but also on two other elements with valley information associated: 
specular highlights and blood vessels. 
 
 1.2.1. Polyps 
 
 The majority of the works related to polyp characterization are based on 
the calculation of a certain feature descriptor over the image to support the 
final decision about polyp presence. Existing approaches are divided in two 
groups: 1) Shape-based; and 2) Texture and color-based. Shape-based 
approaches aim to search in colonoscopy frames those specific shapes that 
polyps commonly have. This group can be divided into two categories: detection 
by curvature analysis and by ellipse fitting. The first subgroup cluster a series of 
methods which observe the curvature value of the boundaries observed in the 
image, which are obtained generally using low-level image processing 
operations such as gradient, edges or valley information. Methods belonging to 
this category include the works of [12], [13] or [14]. The second group of 
methods assumes that polyps tend to have elliptical shape. Examples belonging 
to this group can be found in the work of [15] or at [16]. Finally some other 
works like the one proposed in [17] combine both curvature analysis and shape 
fitting to detect polyps in the image whereas other methods [18, 19] base their 
localization of polyps in the pure analysis of low-level features of the image such 
as valleys or edges. The use of texture and color-based approaches in polyp 
characterization has been gaining interest during the last years. Some works are 
based on the use of wavelet descriptors -such as [20] - paying attention on the 
detail and approximation coefficients of the wavelet transform. Other 



 

alternatives include the use of local binary patterns [21] or co-ocurrence 
matrices [22]. Finally an interesting approach is the use of several texture and 
color MPEG-7 descriptors to build up polyp detection methods [23]. One big 
drawback of this group of methods is that they tend to need of an exhaustive 
training and they are very sensitive to parameter tuning. 
 We propose in this paper our Window Median Depth of Valleys 
Accumulation method (WM-DOVA), which can be enclosed into the shape-
based group. Although WM-DOVA shares similarities with some available 
methods in the use of low-level image processing [12], our method is the only 
one which also searches for concavity of boundaries and considers other 
elements of the scene such as blood vessels and specular highlights. WM-DOVA 
also admits variable polyp shapes, unlike other methods [15, 16] which are 
specifically focused on elliptical shapes. In addition, WM-DOVA also integrates 
color information for discarding those valleys originated by blood vessels. 
 One big problem when comparing different approaches is the lack of a 
public fully annotated database [18]. Nevertheless none of the published 
methods consider clinical impact of polyp localization, since the databases used 
in the experiments do not convey any kind of clinical information regarding 
polyp size or type. In order to solve this we contribute in this paper with the 
introduction of the 2CVC-ClinicDB database, built in collaboration with Hospital 
Clinic of Barcelona, Spain. 
 

1.2.2. Specular highlights 
  
 The output of a valley detector gives response both inside the specular 
highlight and in a neighborhood of pixels around it, impacting the performance 
of algorithms relying on valley information such as the one we propose. In order 
to mitigate their impact two different operations must be performed: 1) 
Detection of specular highlights, and 2) inpainting, defined as the substitution of 
the specular highlight area to avoid the apparition of valley information. 
 We find several related works in the literature regarding  specular  high- 
lights detection, such as the work of [24] which assign sudden color changes to 
highlights, or the works of [25, 26, 27], which exploit the definition of specular 
highlights as a combination of diffuse and specular reflection.  Other methods 
offer a combined solution for detection and inpainting, although some of them 
[25, 26] are not suitable for our case since there is no non-overexposed channel 
from which to extract information needed for inpainting.  Finally, there are two 
works that present a solution for both detection and inpainting in colonoscopy 
images [28, 19] with high reported accuracy against general methods. 
 
 
 
                                                           
2 CVC-ClinicDB is currently available at http://www.polyp2015.com/wp/?page_id=141 and at 

http://mv.cvc.uab.es 

http://www.polyp2015.com/wp/?page_id=141


 

1.2.3. Blood vessels 
 
 The majority of the literature regarding the presence of blood vessels is 
related to their segmentation and consequently different methods have been 
proposed [29] in non endoscopy domains. In our particular case we are not 
concerned on blood vessels segmentation but on their contribution in terms of 
valley information, and taking this into account, we opted to study if their 
impact changed according to the color space we were working with, as a way to 
mitigate their presence. Current experimental results [19] show that by using 
the channel B of the standard RGB image we both enhance polyp-related valleys 
and mitigate blood vessels valleys. 
 

2.  Windows Median DOVA Energy Maps based on a Model of 

Appearance for Polyps 
 

We present in this section WM-DOVA energy maps which are based on an 

extended model of appearance for polyps.  
 

2.1. Model of appearance for polyps 
 
 In order to build up our model we consider both the physical model of a 
polyp along with how colonoscopy images are acquired.  In our model we 
consider polyps as abnormalities that appear as protruding surfaces on the 
colon wall. Polyps create a sloping surface in their union with the colon wall.  

This surface generates a contour around the polyp which is meant to 
delimit the polyp from the colon wall. The contour can be approximated as a 
closed and continue curve with smooth curvature profile. Taking this into 
account, we can approximate polyps as spheres -with some degree of 
deformation embedded on the colon wall. 
 Regarding image acquisition, colonoscopes have a light source and a 
camera, both attached and pointing in the same direction towards the colon 
walls. This can be approximated as illuminating a tubular surface with an axial 
light. Thus, surfaces with their normals oriented in the same direction as the 
pair light-camera appear brighter as they reflect the incident light towards the 
camera. Conversely, as we deviate from this situation, the amount of light 
reflected decreases [18]. 
 Given this model, we consider three different scenarios: 1) Optimal 
scenario (with respect to model fitting), with a complete zenithal view of the 
polyp -see Figure 1 (a)-; 2) Semi lateral view of the polyp -see Figure 1 (b)- and 
3) Lateral view of the polyp -Figure 1 (c)-. 
 



 

  
 

(a)  Zenithal                            (b) Semi lateral                             (c) Lateral 
 

 
 

(d)  Intensity profile                 (e) Intensity profile                 (f) Intensity profile 

Figure 1: Examples of the three possible scenarios that need to be considered when defining a 

model of appearance for polyps:  (a-d) Zenithal view; (b-e) Semi lateral view; (c-f) Lateral view. 

A green line is superimposed in the original images to highlight the area of the image to be 

studied. 

 
 In zenithal view, the normal at the polyp center shares orientation with 
normals on the colon wall so polyp surface will appear with high intensity value 
due to maximal reflection. Conversely, polyp frontier appears dark since its 
normal deviates from the wall’s normal. If we move from the center of the 
polyp towards its boundary, the corresponding intensity profile will constitute a 
valley, as can be observed in Figure 1 (b). Consequently, polyps in zenithal views 
appear as surrounded by intensity valleys. 
 As we deviate from the optimal scenario, the orientation of the pair light-
camera diverts from the orientation of the normal on the colon wall -semi 
lateral view, Figure 1 (c)-. The worst possible scenario will happen when the 
camera looks laterally at polyps while looking in parallel to the colon axis -lateral 
view, Figure 1 (e)-. Even in semi lateral and lateral views valley information is 
still present. In semi lateral views valleys are present in both extremes of the 
polyp profile as long as some part of the colon wall can still be observed. In 
lateral views, the valley behind the polyp is substituted by a steep contour 
which separates the lumen from the polyp -Figure 1 (f)-. 
 In conclusion, our model implies that polyps are surrounded completely 
by valleys in zenithal views and partially when they are viewed laterally. Valleys 
surrounding the polyp will constitute a closed curve which can be partial or 
completely closed. This curve will appear as concave from inside the polyp. The 
intensity and strength of the valley depends greatly on the direction of the 
illumination and on how protruding is the polyp. Considering this, according to 
Paris classification criteria [30] our model fits completely to polyp appearances 
of types Is, IIa, IIb, and Ip polyps in zenithal view, and partially to polyps in 
lateral and semi lateral views. 
  



 

 
 

(a)                                             (b)                                             (c) 

 
Figure 2: Valley information sources: (a) Original image; (b) Valley image; (c) Manually- marked 

valley image.  Marked valleys are from polyps (red), blood vessels (blue), specular highlights 

(yellow) and black mask (orange). 

 
 Unfortunately polyps are not the only source of valley information (see 
Figure 2). Both specular highlights and blood vessels convey valley information 
that should be treated properly in order not to have an impact in polyp 
localization results. Image preprocessing is performed to mitigate impact of 
non-polyp valleys. Preprocessing is also used here to eliminate some image 
artifacts that are caused by the image acquisition system. We apply four 
different preprocessing operations: 1) Image deinterlacing to remove artificial 
valleys created by time difference in the acquisition of the odd and even lines of 
a frame; 2) Specular highlights detection and inpainting; 3) Black mask 
inpainting,  and 4) Blood vessels mitigation by using channel B of sRGB image. 
The interested reader can find more details about these operations in [19]. 
 Once image preprocessing operations are applied to the colonoscopy 
frame, we need to obtain the valley information which will be used to 
characterize polyp boundaries. Consequently, the use of a valley detector is key 
in our localization scheme. There are several approaches for valley detection in 
the literature but we opt to use a geometrical valley detector [31] which adjusts 
better to the structures we are searching in the image. This valley detector 
succeeds at localizing the valleys in the image but it does not give enough 
information of the depth of the valley, i.e., the strength of its contribution. 
 To cope with this, we developed the Depth of Valleys image (DV image) 
[18] which combines valley information -from the valley detector [31] - with 
gradient information -via morphological gradient-. The DV is achieved through 
the pixel-wise multiplication of the ridges/valleys detector and morphological 
gradient in the following way: 

                                                                                                                                                           

, where V stands for the output of valley detector, I for the original input image 

and C for the disk structuring element used in the dilation (⊕) and erosion (⊖) 

morphological operations.  Formulated in this way, DV image has higher values 
in the points that constitute the relevant valleys of the image. It must  be 
noticed  that, in order  to calculate  the morphological  gradient, the ridge and 
valley extractor needs two parameters -differentiation σd  and integration  
scales σi - that must  be set  in correspondence  to the size of the structuring  



 

element  (sd)  [31]. More precisely, σi should span the same size as sd to both 
work in the same scale. 

 

 

2.2. Generation of WM-DOVA Energy Maps 
 
 The basic idea of our localization method is that, as our model defines 
polyps as surrounded by intensity valleys, any given pixel in the image inside a 
valley structure is prone to be part of the polyp. WM-DOVA energy maps are 
created to integrate valley information in a way such polyp boundaries are 
fostered. High energy areas of WM-DOVA energy maps are meant to be related 
with areas with high likelihood of polyp presence. In order to favor polyp 
boundaries against other structures in the image, WMDOVA applies four 
different constraints to boundary candidates, namely: Completeness, 
robustness, continuity and concavity. 
 1) Completeness: Our model states that polyp boundaries tend to be 
complete, that is, a pixel inside the polyp should be surrounded by valleys in the 
majority of directions. In order to favor complete boundaries from those which 
only have contribution in a few directions we use the following approach: we 
define a ring of radial sectors centered on each pixel in the image and we 
accumulate DV values for all the sectors. As our DV image has been defined to 
enhance deep valleys, we only accumulate the maximum of DV image under 
each sector. In this way we are fostering boundaries composed by pixels with 
high DV value which have contribution for a high number of directions. We can 
see an example of this in Figure 3 (a-b), where we can observe that the 
maximum of accumulation is higher for a more complete boundary than for the 
incomplete one. 
 2) Robustness against spurious responses with high DV value: Our 
system should discard contributions from boundaries composed by pixels with 
high DV value concentrated in a few directions against contributions from 
boundaries composed by pixels with lower DV value comprising the majority of 
directions. To achieve this, we apply a median operation to the final value to be 
accumulated. By doing this, we penalize those undesired boundaries such as the 
one shown on the right part of Figure 3 (c-d). We can observe in Figure 3 (d) 
that the accumulation is higher for the circular (complete) boundary, although it 
is composed by pixels with lower DV value. 
 3) Continuity: WM-DOVA energy maps should favor continuous 
boundaries against discontinuous. This is achieved by the use of an angular 
median operator Med. The angular median calculates the median of the 
distances from the maximum of DV under each sector to the center of the ring 
of sectors, for a given number of sectors 2ws + 1. This operator favors the 
contributions of consecutive sectors having the maximum of DV at a similar 
distance to the center. We can see an example of how this is fostered by 
observing Figure 3 (e). We can observe how the synthetic boundary on the right 



 

is composed by two incomplete boundaries which do not have a maximum of 
DV at the same distance to the center. By applying the angular median, the 
maximum of accumulation for this boundary will be very low, as the median of 
distances to the center between two adjacent parts of the two boundaries will 
be between both of them, hence mitigating their contribution to the final 
accumulation value, as it can be seen in Figure 3 (f). 
 4) Concavity: The final condition that our model imposes is that 
boundaries should be locally concave from the point of view of a pixel inside the 
polyp, which implies that if we take a window of sectors comprising several 
directions, the distance from the boundary candidate for a given direction to 
the median of distances under the window should be small. We use the median 
of the distances to the center as exposed before but in this case we calculate a 
pondering factor which will modify the contribution of maximum of DV under 
each sector. This pondering factor will depend on the distance from the 
maximum under the current sector to the median of the distances for the 
considered window of sectors. By applying this pondering factor we favor 
boundaries such as the ones shown in the left part of Figure 3 (g), as in this case 
all the pixels constituting the boundary have a more similar distance to the 
center than those in the right part of the Figure. WM-DOVA energy maps will be 
consequently more focused on concave boundaries than to those locally 
convex, as can be observed in Figure 3 (h). 
 By imposing the four mentioned constraints we help also to mitigate the 
impact of other elements of the endoluminal scene. The definition of the 
window of radial sectors helps to mitigate response of blood vessels or folds as 
its contribution in terms of DV image will happen only in a few directions and 
without concave profile. The use of the median in the accumulation has also 
effect in the removal of the contribution of spurious valleys that can appear due 
to non-homogeneous illumination. 

 
 

(a)                                (b)                                (c)                                (d) 

 

 
 

(e)                                (f )                                (g)                                (h) 

 
Figure 3 :   Example of use of WM-DOVA energy maps to foster: (a-b) Completeness in 

boundaries; (c-d) Sensitivity to noise; (e-f) Continuity and (g-h) Concavity. Image (a,c,e,g) 

show original synthetic images whereas images (b,d,f,h) represent WM-DOVA energy maps. 

Pixels with high DV value are marked in white in the original image. Hotter areas in the map 

correspond with zones with high accumulation value. 

 
 

 



 

 
 

(a)                                             (b)                                             (c) 
 

Figure 4: WM-DOVA algorithm: (a) Calculation of   
   

 under Si; (b) Definition of window of 

sectors and calculation of   
   of sectors under window; (c) Obtention of distances dn from 

  
    to center p and calculation of     

   
. 

  
 As mentioned above, WM-DOVA defines a window of 2ws + 1 sectors 
which integrates the information of neighboring ring sectors fostering in this 
way concavity and continuity. To ease the comprehension of the WM-DOVA 
algorithm we will support on the graphical example shown in Figure 4, in which 
the black contour is a binary approximation of the DV output for a polyp 
contour. For each pixel p in the image, the WM-DOVA algorithm consists of 4 
different steps: 

1. Calculation for each sector Si of the following: a)   
    = maxSi(DV ) as the 

maximum of DV under sector Si;  b)    
   = argmaxSi(DV) as the position 

of the maximum of DV under sector Si; and c) di = dist(p,    
   ) as the 

distance between current pixel p and    
   . 

2. Definition of a window of width 2ws + 1 sectors centered on Si (Fig. 4 (b)). 
3. Calculation of the contribution of   

    in the final accumulation value. 

To do so we first obtain   i = Med(dj), with j    [i-ws,i+ws], as the angular 
median of the distances dj to p for the window of sectors centered on Si 
(Fig. 4 (c)). 
Then we calculate a pondering factor γi which is calculated as follows: 

    
 

  
        

   

                                                                                                  

, with       [0, 1]. γi  is a mitigation coefficient which penalizes isolated 
high DV values which break the continuity of the contour. On the one 
hand, if the distance    

    from the current pixel to   
    is similar to   I, 

there will be no mitigation. On the other hand, in cases like the one 
shown in Fig. 4 (c) where    

   is substantially higher than   I, the 
corresponding   

    value will be mitigated, as γi will be low. The final 
contribution of   

    to the final accumulation value is calculated as 

follows: 
   
           

                                             (3) 
 

 
 



 

 
 

(a)                                  (b)                                  (c)                                  (d) 

 

Figure 5: WM-DOVA energy maps generation: (a) Original image; (b) Fully preprocessed image; 

(c) WM-DOVA energy map and (d) Output image with maximum of WM-DOVA energy map 

superimposed and marked as a star. Energy maps are shown as heat maps where hotter areas 

correspond to areas with high likelihood of polyp presence. 

 

WM-DOVA also favors concavity since for the case of locally circular 

contours the line that joins the maxima  of DV under  the sectors  of 

the window tends to coincide with the boundary  (particularly true 

for polyp contours). 

4. Calculation of the final accumulation value for pixel p as: Accp = 

Medi(    
   ), with i ∈ [1, ns]. 

 WM-DOVA needs of three different parameters: 1) Minimum radii of 

the sectors (radmin); 2) Maximum radii of the sectors (radmax), and 3) Width 

of the windows of sectors (ws). The number of sectors ns has been set to 180 

aiming to cover all the needed different directions. Regarding the scale at 

which WM-DOVA works, we want to stress that parameters radmin and 

radmax are not actually defining a particular scale but a range of scales. This 

allows the method to detect both small and large polyps. Should radmin be 

smaller, directional information would be lost due to the smaller number of 

pixels in the lower part of the sector. 

 As WM-DOVA has been built according to our model of appearance of 

the polyps, the maxima of the WM-DOVA energy map should fall inside the 

polyp. Our polyp localization processing scheme therefore consists of 

preprocessing the input image by applying the different operations explained 

in Section 2.1, and then DV image is calculated. Finally WM-DOVA energy 

maps are generated. We can see a complete example of the different steps in 

Figure 5. 
 

 

3.  RESULTS 
 

 We present in this section a double validation of WM-DOVA energy 
maps. The first validation is focused on assessing the performance of WM-DOVA 
as part of an automatic polyp localization method. WM-DOVA energy maps are 
tested on two different databases, including a new one with clinical metadata 
associated and results are compared with previous available methods. The 
second validation aims to assess whether the WM-DOVA energy maps  
 



 

 
 

(a)                                             (b)                                             (c) 

 
Figure 6: An example of the content of CVC-ClinicDB database:  (a) Original image; (b) Polyp 

mask; (c) Specular highlights mask. 

 
distribution has correspondence with visual saliency models from physicians 
fixations and state-of-the-art saliency models. 
 
3.1. Polyp localization results 

 

3.1.1. Databases used in the experiment 
 In order to validate the outcome of our polyp localization method we 
need a ground truth defining the position of the polyp in the image. Up to our 
knowledge there is only one public fully annotated database, (CVC-ColonDB) 
[18, 32]. Unfortunately CVC-ColonDB did not contain any kind of clinical 
metadata. 
 We introduce in this paper the CVC-ClinicDB database built in 
collaboration with Hospital Clinic of Barcelona, Spain. CVC-ClinicDB has been 
generated from 23 different video studies from standard colonoscopy 
interventions with white light. For each study all the sequences containing a 
polyp were extracted, providing a total number of 31 sequences of 31 different 
polyps. We rejected all the frames with extremely high patient preparation or 
bad visualization quality due to image blurring. In this way, 31 frame sequences 
with an average number of 25 frames were obtained; paying particular 
attention that for each sequence we obtain as many different polyp 
appearances as possible. CVC-ClinicDB database comprises 612 polyp images of 
size 576 × 768. 
 In addition to the frames, a ground truth was created by the experts by 
manually defining a mask on the region covered by the polyp. To assess the 
impact of image preprocessing in polyp localization results, experts also 
provided ground truth for specular highlights. We can see an example of the 
frames of our database and their corresponding ground truths in Figure 6. 
 Clinicians also provided the following clinical metadata associated to each 
polyp: 

 Polyp size in mm: polyps are clustered in three categories according to 
[7]: a) Diminutive (≤ 5 mm); b) Small (6 size ≤ 9 mm); c) Large (> 10 mm). 

 Polyp classification according to Paris criteria [30]: 6 groups are defined: 
Ip (protruded, pedunculated), Is (protruded, sessile), IIa (superficial, 
elevated), IIb (flat), IIc (superficial shallow, depressed) and III (excavated).  



 

 
(a) Large, Ip, 

Adenomatous 

(b) Small, Is, 

Adenomatous 

c) Diminute, IIa, 

Hyperplastic 

(d) Large, IIb, 

Adenomatous 

 
Figure 7: Example of polyps present in CVC-ClinicDB database along with their categorization. 

  
 Polyps of categories IIc and III have a low prevalence and they were not 
 found in the interventions recorded when creating the database. 

 Histological type of polyp after biopsy: in this case polyps have been 
subdivided into two groups: Adenomatous -488 images (79.74%)- and 
Hyperplastic -124 images (20.26%)-. 

 We show in Figure 7 an example of some polyps from the database 
categorized according to the metadata provided. 

 

3.1.2. Metrics and parameters of the experiment 

 

The following performance metrics are defined for this experiment: 
1. Accuracy: The accuracy of the maximum of WM-DOVA to localize the 

polyp is calculated as      
  

     
. For each frame, we have a True 

Positive -TP- when the maximum of WM-DOVA energy map is inside the 
polyp mask. If the maximum falls outside the mask we have a False 
Positive -FP-. 

 

2. Concentration Ratio: -CR- as the ratio energy of the image that falls under 

the polyp mask. CR is defined as:    
      

      
, where Epolyp corresponds to 

the total energy under the polyp and Eframe corresponds to the total 
energy of the image. A high CR value will correspond to a map focused on 
the polyp whereas a low CR value will denote a sparser energy map. 

 Our sampling size (612 for the case of CVC-ClinicDB) warrantees that 

accuracy in localization is estimated with a variability under 
 

  
  

 

    
 = 4%. A 

variability of less than 10% is not considered as relevant in clinical trials [33]. 
 WM-DOVA parameters were set to radmin = 10 and radmax = 120 
considering the minimum and maximum radii of the polyps -in pixels- that 
clinicians observe during intervention time. radmin = 10 implies a circumference 
of 60 pixels and radmax = 120 implies a circumference of 720 pixels. Being ns = 
180 sectors, we are already sharing 1 pixel between 3 sectors in the lower part 
and we are using 4 pixels per sector in the upper part of the sector. If radmin 
becomes smaller the meaning of directions is lost. This ranges polyps from 0.3%  
 



 

 
 
 
 

Table   1:    Polyp   localization   results   in   CVC-ClinicDB    database   (612 images   and 

CVC-ColonDB (300 images). 

 
of the image area to 41% of the image area. In this sense, our method actually 
could fail in highlighting polyps occupying more than 40% of the image size, 
which is a clinically irrelevant case. Finally, the optimal value for ws was tuned 
on a validation set of 30 images from the same videos but not belonging to the 
final database with a final value of ws = 18, being the total window size of 37 
sectors comprising 74o. 
3.1.3. Experimental Results 
 We present in Table 1 a comparison of our WM-DOVA polyp localization 
method against previous available methods using valley information, which 
represent all the different categories of shape-based methods which were 
exposed in Section 1.2. For instance EF-DOVA applies ellipse-fitting to 
boundaries whereas VO-DOVA exploits curvature of boundaries. 
 Regarding CVC_ClinicDB, we can see in Table 1 how WM-DOVA offers the 
best performance with an accuracy of 70.26% -430 images-, outperforming the 
rest of approaches. We can see that WM-DOVA improves results of EF-DOVA 
(which uses ellipse fitting) in 165 images which confirms our original hypothesis 
that constraining our method to a certain shape could lead to good particular 
results for those polyps that fit this shape, but a bad overall result. The joint use 
of completeness, robustness, continuity and concavity lead to an improvement 
over the rest of the approaches, surpassing its closest competitor MSA-DOVA in 
80 images. We can observe the same trend for CVC-ColonDB although in this 
case the performance of all the methods increases. Performance differences are 
related to being CVC-ClinicDB a more complete and difficult database with 
appearances that does not exist in CVC-ColonDB as it almost triples the number 
of different polyps it contains (31 against 12). 

 
Size category # of Frames in CVC-ClinicDB Correct localization 

Diminutive (size ≤ 5 mm) 268 (43.79%) 172 (64.17%) 
Small (6 < size ≤ 9 mm) 162 (26.47%) 136 (83.95%) 
Large (size ≥ 10 mm) 182 (29.73%) 122 (67.03%) 

 
Table 2: Polyp localization results according to polyp size. 

 
 
 
 

 

 
 

 

Method Acc in CVC-ClinicDB Acc in CVC-ColonDB 

EF-DOVA 43.30% (265 images) 46.00% (138 images) 

VO-DOVA 45.59% (279 images) 55.44% (166 images) 

SA-DOVA 50.65% (310 images) 61.66% (185 images) 

MSA-DOVA 57.03% (349 images) 67.66% (203 images) 

WM-DOVA 70.26% (430 images) 72.33% (265 images) 



 

 

 

 

 
Paris 

Classification 
# of Frames in CVC-ClinicDB Correct localization 

Ip 174 (28.43%) 119 (68.39%) 
Is 208 (33.98%) 136 (65.38%) 
IIa 168 (27.45%) 121 (72.02%) 
IIb 62 (10.13%) 54 (87.09%) 

 

Table 3: Polyp localization results according to Paris Classification. 

 We present a breakdown of polyp localization results using WM-DOVA as 
energy map in Table 2 and Table 3. As it can be seen from Table 2, our 
localization method works better for polyps smaller than 10 mm, which are the 
largest group in our database and also, as mentioned in Section 1.1, those cited 
by clinicians as the main cause for the miss-rate. Regarding Paris classification 
we can see in Table 3 that our method seems to be particularly well suited for 
IIb and IIa polyp types, which is expected considering our model of appearance 
for polyps. Concerning the histology of the polyp after biopsy, WM-DOVA is 
more successful -72.54% against 61.29%- when locating adenomatous polyps, 
which comprise the larger number of frames in our database. 
 One important thing to mention is that WM-DOVA is able to locate the 
polyp present in all the 31 sequences of 31 different polyps that CVC-ClinicDB 
comprises, showing the robustness of our method even considering the great 
variability of polyp appearances observed in the database. 
 For the case of the concentration ratio, we present in Figure 8 boxplots 
that show, for each algorithm, the distribution of the ratios of energy inside the 
polyp mask. We can observe that there is indeed a significant difference in 
performance between WM-DOVA and the rest of the methods. More precisely, 
the mean CR value inside the polyp mask is 89.28% for WMDOVA, followed by 
MSA-DOVA with a 27.01%, SA-DOVA with a 22.61%, VO-DOVA with a 19.55% 
and EF-DOVA with a 16.09%. Consequently, the maximum of WM-DOVA energy 
maps does not only localize correctly the polyp in more images but WM-DOVA 
energy maps also concentrate their energy more densely inside the polyp mask. 
 
 
 
 
 
 

 
 

 
 

 

 



 

Figure 8: Comparison of the percentage of energy inside the polyp mask among existing DOVA energy 

maps 

 
Figure 9:  Impact of image preprocessing on polyp localization results.   Total number of images 

= 612. 

  
As mentioned in Section 2.1, we tackle in our image preprocessing stage 

the impact of other elements of the endoluminal scene in terms of valley 
information. We present a summary of the results in Figure 9. We can see in this 
case that blood vessels mitigation shows to have a relevant impact on polyp 
localization results, obtaining a difference in terms of successful polyp 
localization in 93 images (more than a 15% difference). We also improve 
accuracy results in polyp localization in 72 images (11.76%) by tackling specular 
highlights correction.  Finally black mask inpainting has no impact on the results 
which can be related to the fact that physicians inherently tend to place polyps 
away from the borders during the colonoscopy intervention. Image 
preprocessing has been proven to have an impact in the overall performance of 
our localization method. We show in Figure 10 an example of the impact of 
image preprocessing on polyp localization. 
 
 

 
 

(a)                                  (b)                                  (c)                                  (d) 

 
Figure  10: Impact of image preprocessing  on polyp localization results:  (a)  Original  image; (b) 

WM-DOVA  energy map; (c) Preprocessed image; (d) Corresponding WM-DOVA energy map;  

Maxima  of WM-DOVA  are painted as a green square  when they fall inside the polyp mask and 

as a red square  if they fall outside.  The polyp contour is painted in blue. 

 
 
 
 



 

3.2. Experimental results on validation of WM-DOVA energy maps as saliency 
models 
 
 The aim of this section is to validate the potential of WM-DOVA energy 
maps as saliency models. In order to assess the applicability of WM-DOVA in 
clinical environments, we will compare its performance when searching for 
polyps against physicians’ visual attention models which are obtained by 
integrating fixations gathered by means of an eye-tracker device. In this case, if 
the maxima of WM-DOVA maps also correspond with the areas that drive the 
attention of the physicians during the visual search for polyps, we can assess 
that our system not only localizes polyps in an accurate way but also identifies 
the same potential regions for polyp presence by performing -seeing- in the 
same way as a physicians do. In this context, WM-DOVA can also be seen as a 
saliency model considering that polyps are meant to be the most salient part of 
a colonoscopy frame. Considering this we also compare WM-DOVA with state-
of-the-art computational saliency methods aiming to confirm the hypothesis 
that our method is able to capture better the saliency of a colonoscopy frame in 
the context of polyp localization. 
 
3.2.1. Use of task-driven saliency maps to integrate physicians’ fixations 

 

 WM-DOVA energy maps correspond with a bottom-up approach that 
highlights image regions that are associated to a high likelihood of polyp 
presence. Unlike general methods for saliency detection -with different degrees 
of bottom-up [34, 35, 36, 37, 38, 39] or top-down implementation [40, 41] - our 
approach appears especially tuned to the model of appearance associated for 
polyps [18]. 
 Saliency maps modeling the physicians’ visual attention were obtained 
from the fixations acquired by eye-tracking the physicians during the screening 
of colonoscopy sequences under the task of finding polyps. Maps generated in 
this way do not only take into account the low level saliency of the images but 
also involve high-level cognitive factors related with the task, that turn into 
relevant certain areas of the image during the screening process [42]. 
The work presented in [43] shows how fixations can be integrated into task-
driven saliency maps. In this case, the saliency map is represented by a fixation 
density map in which the measures obtained by different subjects are 
integrated into the density map to create an average subject. The fixation 

density map is then created from a set of discrete points (  
 

,  
 

), i = 1, . . .N, 

where N is the total number of fixations in a frame and (  
 

,   
 

),  is the location 

of the i-th fixation point. Those fixations correspond with the centers of 
Gaussian functions that generate the fixation density map s(x, y): 
 
 



 

 
 
 
 
 
 
 

(a)                                           (b)                                           (c) 
 

Figure 11: (a) Original image; (b) Physicians’ fixations; (c) Physicians’ saliency map 
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where    is the standard deviation of the Gaussian function, determined 
according to the visual angle accuracy. A pixel in a densely populated fixation 
area is more attractive to the attention than a pixel in a sparsely populated 
area. An example on physicians-related task-driven saliency maps is show in 
Figure 11 (b) and (c). 
 
3.2.2. Databases used in the experiment 
 
 As our objective is to compare computational saliency models –including 
our proposal WM-DOVA- against physicians’ task driven saliency maps, we need 
to define a ground truth related to physicians’ attention model which was built 
in the following way: a series of experiments were run in association with 22 
physicians from Beaumont Hospital and Saint Vincent’s Hospital in Dublin, 
Ireland. The experiments consisted of showing, to each physician, 11 different 
videos and, by using an eye tracking device, acquiring the gaze position for each 
frame. We show in Table 4 a summary of the number of interventions done by 
the different physicians with different degrees of expertise. Comparison studies 
between subjects of different level of expertise (experts vs. novices) have been 
carried out in several domains such as threat assessment [44] and on the 
analysis of fixations during a laparoscopic operation [45]. The task of labeling an 
individual to the expert or novices cluster depends on the specific application. In 
our case, the threshold number of interventions used to divide physicians into 

 
Table 4: Number of interventions performed by each physician. 

 
 
 
 

Physician 1 2 3 4 5 6 7 8 9 10 11 

Procedures 50-100 2000 5 0 600 800 100+ 400-
500 

0 2000 600 

Physician 12 13 14 15 16 17 18 19 20 21 22 

Procedures 20000 80 1250 200 8 200 20 80 10 500 50 



 

 
 
 
 
 
 

(a)                                             (b)                                             (c) 

Figure  12: Examples  of content of CVC-EyeTrackerDB. 

experts or novices was set to 100, as suggested in [46] and we use these clusters 
in the comparison with WM-DOVA and the rest of computational saliency 
models. Using these two clusters, an average expert and average novice task-
driven saliency map was generated by integrating experts and novices fixations 
as explained in the previous section. 
 In order to carry out the two different analyses proposed we have 
created CVC-EyeTrackerDB database from the above mentioned 11 different 
videos [47]. CVC-EyeTrackerDB comprises all the frames with a polyp from each 
video and two different kinds of ground truth: one is composed by the fixations 
of all the physicians that observed each particular frame of the video whereas 
the second is an estimation of the polyp mask. In this case, due to the huge 
amount of frames available (around ten thousand), experts did not provide 
exact polyp masks but an elliptical approximation which aims at covering as 
much of the polyp as possible. We can see some examples of the ground truth 
superimposed to original frames in Figure 12. 

 
3.2.3. Metrics of the experiment and statistics 
 
 To compare the different saliency models we need to define two 
different concepts that will be used to calculate performance metrics. We 
denote as Polyp Fixation Frame (PFF) the frame in which the maximum of the 
saliency map falls under the polyp mask. Consequently, the First Polyp Fixation 
Frame (FPFF) is defined as the first PFF in a given sequence. Considering this we 
define the following metrics: 

 Reaction Time (RT): difference in number of frames between the first 
frame of the sequence with a polyp and FPFF. We would like to note that 
the lower RT value is, the better diagnostic yield we have. 

 Dwell Time (DT): percentage of PFF out of all the frames with a polyp in a 
sequence. In this case better diagnostic yield is associated to high DT 
values. 

 Mean Concentration Ratio (MCR): CR corresponds to the ratio energy of 
the image that falls under the polyp mask, as defined in Section 3.1.2. In 
this case we define MCR as the mean CR value for all the frames of a 



 

given sequence with a polyp. A high MCR value will correspond to energy 
maps focused on the polyp throughout all the sequence. 

 
 Statistic significant differences across methods are assessed using an 
analysis of variance to detect differences in each of the proposed metrics. Since 
all metrics are related to time and other quantitative always positive, we do not 
expect that they follow a normal distribution. Non-normality in data is 
accounted using non-parametric Kruskal-Wallis (KW) test [48]. 
 For each metric and test, the individuals are given by their value in the 11 
videos and ANOVA factors are the different saliency methods, namely: 1) 
average expert ; 2) average novice; 3) WM-DOVA; 4) Bruce and Tsotsos (BT) 
[34]; 5) Itti-Koch (IK) [35]; 6) Graph Based Visual Saliency (GBVS) [36]; 7) Seo et 
al. [37]; 8) SIM method developed by Murray et al. [38] and 9) SUN method by 
Zhang et al. [39]. 
 All tests have been done at a confidence level 1 −   = 0.95. Using such 
confidence level and this experimental design, tests have an approximate power 
of 80% to detect differences of approximately 0.45 units of variance. Such 
magnitudes are appropriate for an exploratory analysis like the ones presented 

in [33]. 
 

3.2.4. Experimental Results 
 
 Figure 13 (a) shows boxplots for the distribution of the RT values 
achieved by each of the average expert, average novice, WM-DOVA and 
computational saliency maps. A qualitative visual inspection of the boxplot 
indicates that the average expert has the lowest RT, followed by the average 
novice, WMDOVA, SIM and Zhang. All these methods seem to present 
comparable times whereas boxplots for the remaining ones are clearly larger. 
The KW test detects significant differences across RT values (p − value < 10−6) 
that are explored using the multicomparison test shown in Figure 13 (b). The 
best ranked group corresponds to the blue horizontal line, comparable groups 
to grey lines and groups with statistically significant different performances to 
red lines. This test indicates that there are no significant differences among the 
average expert, average novice and WM-DOVA. 
 Figure 13 (c) shows boxplots for the distribution of DT values. Visual 
analysis of boxplots indicates that the average expert, average novice and WM -
DOVA have a similar distribution in contrast to the lower range of the remaining 
saliency methods. It is also worth noticing that DT values distribution are very 
similar for the average expert and the average novice, and differences could be 
attributable to differences in RT. This follows from the fact that, once the polyp 
is found, clinicians keep focusing their attention inside the polyp for the rest of 
the sequence. Again, a KW test detects significant differences across DT values 
(p−value < 10−6), which are explored in the multicomparison test results plotted 
in Figure 13 (d). Such difference is due to GBVS and Seo being  
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(c)                                                                    (d) 

 

 
 

(e)                                                                    (f) 

Figure  13:  Boxplots showing distribution of:  (a)  Reaction Time  (RT)  values;  (b)  Dwell Time  (DT)  
values  and  (c)  Mean  Concentration Ratio (MCR)  values.   Results  of multi- comparison  analysis  for:  
(b)  RT  values; (d)  DT  values and  (f ) MCR  values.  For each of the multicomparison tests, best ranked 
group is represented with a blue horizontal line, comparable methods in grey and statistically significant 
different methods in red. 

 
significantly worse than the rest of the methods. Among the remaining groups, 
it is worth noticing that the average expert, average novice and WM-DOVA are 
better than BT, SIM and Zhang. 
 Boxplots showing the distribution of MCR values are shown in Figure 13 
(e). A qualitative analysis again shows that the average expert presents the 
higher MCR value, followed by the average novice, WM-DOVA and the  
 
 



 

 
 

(a)                         (b)                         (c)                         (d)                         (e) 

 

 
 

(f )                         (g)                         (h)                         (i)                          (j) 

 
Figure 14: Comparison of saliency maps represented as heat maps:  (a) Original image with polyp mask 
superimposed; (b) Avg. Expert; (c) Avg. Novice; (d) WM-DOVA energy map; (e) Bruce and Tsotsos; (f) 
GBVS; (g) Itti-Koch; (h) Seo; (i) SIM; (j) SUN. High saliency areas correspond to hot regions in the image. 

 
remaining saliency methods. Our method seems to perform better that other 
computational saliency methods, having MCR values distribution closer to the 
one achieved by average expert and the average novice. Trends hinted by 
observing boxplots are confirmed by the non-parametric ANOVA test which 
detects significant differences among all methods (p − value < 10−5). The 
multicomparison plot -Figure 13 (f)- shows that all saliency methods apart from 
WM-DOVA have MCR ranks significantly lower than the average expert and the 
average novice -which both present very similar MCR ranks-. Concerning WM-
DOVA, its MCR is not significantly different than the one achieved by clinicians. 
Finally we present a qualitative comparison of all methods in Figure 14. 
 The average expert saliency map is clearly focused inside the polyp. The 
average novice presents a sparser saliency map where the energy maximal 
values still fall inside the polyp. WM-DOVA is the best candidate among 
computational saliency maps as it has the most polyp-focused energy maps. The 
remaining computational saliency methods present sparser energy maps which 
do not seem to highlight the polyp region against other parts of the image. 
 

4. DISCUSSION 

 

 Colonoscopy is still considered nowadays as the gold standard for colon 
screening although it presents some drawbacks, being polyp miss-rate the most 
relevant of them. In this sense, we presented in this paper a novel polyp 
localization method along with a new validation framework which includes the 
creation of the first, up to our knowledge, fully annotated database with clinical 
metadata associated. Our polyp localization method is based on a general 
model of appearance for polyps, including the characterization of specular 
highlights and blood vessels. WM-DOVA is a parametric method that adapts 
easily to all polyp sizes and appearances, not favoring any predetermined shape 
like other methods in the literature. We analyze in this section WM-DOVA 



 

performance, indicating whether it has potential to be included in clinical 
practice along with indicating future improvements and research lines. 
 
4.1. Conclusions: Clinical applicability of WM-DOVA energy maps 
 Our polyp localization method using WM-DOVA energy maps 
outperforms current available methods over both our publicly available fully 
annotated database and CVC-ClinicDB. Moreover, our method succeeds locating 
the polyp in all the 31 different sequences with 31 different polyps, showing the 
robustness of our method even considering the great variability of polyp 
appearances observed in CVC-ClinicDB. 
 The analysis of localization results using clinical metadata shows that 
WM-DOVA is able to localize polyps of all sizes, with a higher sensitivity for the 
smallest ones (size ≤ 10mm). Regarding Paris classification, WMDOVA has the 
higher localization accuracy better for flat polyps which, by their geometry and 
appearance in videos, are the ones having a higher chance to be missed. 
Concerning this we observe that there is not a consensus about polyp miss-rate 
causes. We would like to note that another important source of polyp miss-rate 
in current colonoscopy procedures is associated to folds that might hide polyps. 
It is clear that no computer vision method could be able to locate a polyp when 
it does not appear in the image and improving the scope field of view is an 
active area of endoscopy technology development. In fact, several 
manufacturers are working on innovative proposals such as Fuse endoscope 
developed by Endochoice [49, 50], which provides 330o of visualization as a way 
to make the clinician have a more complete view of the endoluminal scene. In 
this scenario, our method could play a key role to aid the clinician to locate 
polyps in the multiple views provided by Fuse endoscope. 
 Concerning the validation of WM-DOVA as saliency map, our pilot trial 
study using 11 cases shows that it is the best candidate to be used in clinical 
practice as part of an intelligent system for colonoscopy. Our statistical analysis 
does not detect any significant differences among WM-DOVA and clinicians in 
all the metrics considered. Our method clearly outperforms state-of-the-art 
bottom-up saliency models assessing that our model is more suitable for 
detecting polyps as the most salient region of the image when analyzing a full 
sequence of frames with a polyp. 
 Regarding computational cost of our proposal, it is worth mentioning that 
the results presented in this paper have been obtained with a PC with an Intel 
Core i7 3930K twelve-core processor with 8 GB of RAM memory. In order to 
implement the different algorithms proposed we have used Matlab scripts and 
compiled functions to incorporate the GIPL libraries of the CrossVisions package 
[51]. Current implementation of WM-DOVA energy maps takes 10.54 seconds to 
fully process an image. WM-DOVA algorithm is naturally parallelizable and it can 
be integrated into GPU architectures by image partitioning and individual pixel 
assignation to core. These optimizations will surely lead to a decrease in 



 

processing time therefore enhancing the applicability of our method in clinical 
practice. 
 
4.2. Analysis of sources of error in polyp localization using WM-DOVA 
 Experimental results show a good performance of WM-DOVA as part of 
polyp localization method, being able to localize the polyp in all the sequences 
regardless of polyp type or size. Nevertheless there are a few cases in which 
WM-DOVA fails when localizing the polyp in the image. After a deep analysis of 
the results, we have identified three different sources of error, namely: 1) 
Contribution of other elements of the endoluminal scene in terms of valley 
information -Figure 15 (a-d)-; 2) Impact of patient preparation - Figure 15 (b-e)- 
and 3) Presence of lateral polyps which deviate from our model of appearance -
Figure 15 (c-f)-.  
 First of all, we have to consider that polyps, blood vessels and specular 
highlights are not the only source of valley information in colonoscopy frames: 
other elements, especially folds or the lumen, also convey valley information 
and their characterization could potentially lead to an improvement of polyp 
localization results. 
 Secondly, we have to consider the impact of patient preparation: there 
are some cases with extremely bad patient preparation in which neither 
clinicians nor WM-DOVA are not able to locate the polyp. Concerning this, our 
method is able to cope with bad patient preparation although we have to 
consider that in cases with extremely bad patient preparation clinicians tend to 
repeat the operation and, as clinicians performance will do, WM-DOVA 
performance will benefit from having a cleaner endoluminal scene. 
 

 
 

(a)                                           (b)                                           (c) 
 

 
 

(d)                                           (e)                                           (f ) 

Figure  15:  Errors  in polyp  localization results:   (a,b,c)  Polyp  localization by  means  of 
maximum  of WM-DOVA;  (d,e,f ) Corresponding WM-DOVA  energy maps.  Maximum of WM-
DOVA is marked as a green square inside polyp mask and as a red square outside the polyp 
mask.  Hotter areas of the energy maps correspond with areas with high likelihood of polyp 
presence. 



 

 
 

 Finally there is another source of localization errors related to lateral 
polyps as in this case we do not have complete boundary information, which 
does not help in the accumulation process, as depicted in model explanation in 
Section 2.1. 
 

4.3. Future work 
 

 The analysis of the results also indicates some areas of improvement. 
Future work in this area should involve the complete characterization of other 
elements of the endoluminal scene rich in valley information such as folds or 
the lumen. Currently, WM-DOVA does not apply any kind of spatial or temporal 
coherence, contrary to what clinicians inherently do. This implies that WM-
DOVA does not take into account valuable information from previous frames 
which could enrich the analysis of a full colonoscopy video. This fact and the 
presence of some images with bad visualization quality impacts accuracy in 
localization results when WM-DOVA is applied over a full sequence. 
 Shape, color and texture provide useful information for characterization 
of polyp. We plan to include the use of texture and color contrast between 
regions in order to complement our method as part of our future work. Finally, 
a deeper analysis of the comparison between WM-DOVA saliency maps and 
physicians’ should also let us learn better which are the attractive regions in the 
image in order to identify the computer vision features that better describe 
them. 
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