
BronchoPose: an analysis of data and model configuration for vision-based
bronchoscopy pose estimation

Juan Borrego-Carazoa,b,∗, Carles Sancheza, David Castells-Rufasb, Jordi Carrabinab, Débora Gila
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Abstract

Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames
from the videobronchoscopy to provide an effective guidance during the biopsy. The registration can be
achieved by either tracking the position and orientation of the bronchoscopy camera, or by calibrating its
deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in
neural networks and temporal image processing have provided new opportunities for guided bronchoscopy.
However, such progress has been hindered by the lack of comparative experimental conditions.

In the present paper we share a novel synthetic dataset allowing for a fair comparison of methods. More-
over, this paper investigates several neural network architectures for the learning of temporal information
at different levels of subject personalization. In order to improve orientation measurement, we also present
a standartized comparison framework and a novel metric for camera orientation learning. Results on the
dataset show that the proposed metric and architectures, as well as the standardized conditions, provide
notable improvements to current state of the art camera pose estimation in videobronchoscopy.

Keywords: videobronchoscopy guiding, deep learning, architecture optimization, datasets, standardized
evaluation framework, pose estimation

1. Introduction

Early detection is fundamental for lung cancer mortality reduction (Pastorino et al., 2019; de Koning
et al., 2020). After a suspicious pulmonary lesion (PL) has been detected through a computed-tomography
(CT) scan, decisive diagnosis can only be achieved through a biopsy. Recent advances in sensorics and
imaging have improved the sensitivity yield of navigational bronchoscopy (NB) (Asano et al., 2014; Ishiwata
et al., 2019), establishing it as a solid alternative to percutaneous approaches, which have a higher degree
of medical complications (Han et al., 2018; Gould et al., 2013).

Among the different methods for NB, vision-based NB (VNB) stands out for its low cost, accessible
configuration, and reliability. In such method, a virtual model of the patient pulmonary system is built
from CT scans (Mori et al., 2008; Skalski et al., 2010; Gil et al., 2019) and the optimal path to the PL
is defined. The physician should replicate this path during the intervectional bronchoscopy. Therefore,
during navigation, VNB models require the registration of the virtual lung model with the frames from the
videobronchoscopy to provide an effective guidance during the biopsy. The registration can be achieved
by, either tracking the position and orientation of the bronchoscopy camera (Chien et al., 2020; Byrnes
and Higgins, 2014; Luó et al., 2011, 2012a), or by callibrating its deviation from the pose (position and
orientation) simulated in the virtual lung model.
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Method Year Image Size Tracking Type PE (mm) AE (º) CTF (%)
(Bricault et al., 1998) 1998 100x100 Local/Global 2 5 -

(Mori et al., 2001) 2001 - Local - - 79
(Helferty and Higgins, 2002) 2002 - Local - - -

(Mori et al., 2002) 2002 410x410 Local - - 73.37
(Deligianni et al., 2004) 2004 454x487 Local 3 ± 2.26 2.18 ± 1.63 -

(Nagao et al., 2004) 2004 - Local - - 77.79
(Shinohara et al., 2006) 2006 30x30 Local - - 76.4

(Khare et al., 2009) 2009 - Local - - -
(Khare and Higgins, 2010) 2010 - Global - - 89

(Luó et al., 2011) 2011 362x370 Local - - 83.2
(Luo et al., 2011) 2011 30x30 Local - - 70.2
(Luó et al., 2012b) 2012 362x370 Local 3.72 10.2 -

(Luo and Mori, 2014) 2014 256x263 Local 4.5 12.3 -
(Shen et al., 2015) 2015 487x487 Local 8.48 ± 6.29 - -

(Esteban-Lansaque et al., 2016) 2016 - Global - - -
(Visentini-Scarzanella et al., 2017) 2017 50x50 Local 1.5 - -

(Shen et al., 2017) 2017 - Local 5-151 - -
(Sganga et al., 2019a) 2019 - Local 2.4 3.4 90.2

(Shen et al., 2019) 2019 307 × 313 Local 3.18 ± 2.34 - -
(Zhao et al., 2020) 2020 256x256 Local 1.17 9.71 -
(Wang et al., 2020) 2020 440x440 Local 3.02 - 78.1

(Banach et al., 2021) 2021 Local 6.2 ± 2.9 - -

Table 1: Comparison among bronchoscopic tracking studies with regards to data and evaluation characteristics. Notably, none
of the methods share a dataset (currently there is no publicly available dataset for this task) or publish their code. Moreover,
metrics, although aiming to measure the same quantities, are different or lacking in some cases. Metrics shown are umbrella
terms for measuring the position error (PE), angle error (AE) and the number of correctly tracked frames. Tracking type
(Khare and Higgins, 2010) refers to the type of information provided by the tracking: global type positions the bronchoscope
in macro terms, e.g. 3rd bifurcation, while local, gives information with regards to position and angle of the bronchoscope.

Traditionally, the problem of image-based tracking in VNB has been solved through geometric and hand-
crafted methods. Feature generation (Chien et al., 2020; Byrnes and Higgins, 2014; ?; Luó et al., 2012a)
and similarity measures (Luo and Mori, 2014; Shen et al., 2015; Luo et al., 2011; Khare and Higgins, 2010)
were commonly used for such purpose, accounting, however, with tracking errors and large execution times.

Recently, supervised data-intensive learning methods, such as neural networks (NNs) (Sganga et al.,
2019b; Visentini-Scarzanella et al., 2017; Zhao et al., 2020; Shen et al., 2019), have been used for localization
and tracking in bronchoscopies, providing better results than previous methods. Moreover, temporal learning
techniques have recently been applied to other endoscopic modalites (Turan et al., 2017), but has not been
appropriately tested in bronchoscopy. Additionally, depth information has lately been extensively used to
improve tracking (Recasens et al., 2021; Banach et al., 2021; Shen et al., 2019; Liu et al., 2020), mixing it
with generative neural networks (Zhao et al., 2020; Shen et al., 2019; Liu et al., 2020; Banach et al., 2021).

Despite these advances, there is a common obstacle among studies: results are affected by a lack of
fair comparability due to the absence of public bronchoscopy datasets and the usage of appropriate metrics
as a gold standard, Additionally, learning methods depend on high data availability, often hindering their
application in data scarce environments. Table 1 summarizes such situation from bronchoscopic literature:
none of the selected studies details public code or data as to allow for a fair comparison. With regards to
metrics, position and angle metrics differ or lack in most studies, making further comparison difficult.

In such a situation, with great progress but also lack of comparability, is of outstanding importance
establishing ground points for enabling advances. In the case of a system for pose estimation in intervention
guiding, it should address 3 key points: 1) definition of the most appropriate metric and comparison protocol
for the evaluation of the estimated pose; 2) determination of the most accurate strategy for the processing
of temporal information and 3) the highest generalization level (single or across subject) of models.
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Figure 1: Details of the synthetic dataset for bronchoscopy tracking and calibration. 1a, example of synthetic frames from a
trajectory from patient P18 lower left lobe. 1b, positions visited by the trajectories corresponding to two different patients:
P18 and P20. Both cases only show points pertaining to lower right and left lobe trajectories.

Hence, the goal of this paper is to analyze the performance of different deep learning approaches for
image based bronchoscopy tracking using a standardized and fair comparison framework. In particular, we
contribute to the following aspects:

• Synthetic Dataset. We present a bronchoscopy navigation synthetic dataset based on real anatomies
to enable fair comparison among methods with a cross-subject setting analysis, as well as, address the
data requirements of learning methods.

• Evaluation Protocols. A study and comparison of rotation and position losses and metrics (including
a novel one) for bronchoscopy navigation, which helps to establish better grounds for training and
evaluation.

• Processing of Temporal Information. We investigate different solutions for neural network tem-
poral learning. Models such as recurrent NNs (RNNs) (Hochreiter and Schmidhuber, 1997a; Schuster
and Paliwal, 1997), pseudo-3D convolutions (Tran et al., 2018) or 3D convolutions (Carreira and Zis-
serman, 2017), could exploit temporal information in bronchoscopic videos, currently not explored,
and provide new results.

• Population Modelling. We analyse the different options with regards to data usage for industrial
applications: first, with a across patient setting, focused on the development of a general model, and
secondly, with an intra-patient setting, by providing a specialized model.

Following sections are organized as follows. Section 2 describes the data generation and its characteristics.
Section 3 presents the different metrics and losses for evaluation. Then, Section 4, defines and describes
important concepts and composition of the proposed bronchoscopic system and its elements, altogether with
a description of the temporal learning architectures and proposed population modelling. Next, Sections 5
and 6 present the experiments, their setup, and the main results obtained for the system while exploring
their significance. Finally, Section 7 concludes the article with the main key points and important takeaways.
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2. Dataset Generation

Virtual lung models are built from an own database of computed tomography scans 2 (Diez-Ferrer et al.,
2016) using (Gil et al., 2019) to segment the airways. Virtual airways models are simulated using an own
platform developed in C++ and VTK, BronchoX.

From the virtual models, bronchoscope trajectories are simulated from the trachea entrance up until
the 4-6 level an covering upper-right, lower-right, upper-left and lower-left lobes. Trajectories are generated
from the central navigation path through the luminal central line traversed using the arch-length parameter.
Different increments in this parameter allow the simulation of varying velocities across the path.

For each central path, different variations, both, in position (between [−2 : 1 : 2] voxels in each axis)
and camera orientation (in the range [−45 : 15 : 45] degrees of rotations around the navigation vector) are
generated. The variation in camera position implicitly also modifies the camera point of view, since it is
given by its position and a point in the central path at a distance ∆d from the current point. The rotation
around this navigation vector introduces a variation in the orientation of the image plane. This way, we
simulate a full change in the camera central pose.

Finally, paths with neighbouring variations are randomly combined along the navigation arc-length
parameter in order to simulate realistic trajectories. In total, our dataset has 876 trajectories per patient
and lobe, amounting to a total of 842712 frames.

The dataset has as input values the synthetic frames from the camera view during the trajectory, and
as ground truth source values the associated pose inside the VTK airway model coordinate system. The
position is in voxel units, and camera view angles are presented in Euler angles.

Figure 1a shows some dataset examples. Each row are different carinas and each column represents
variations in position and orientation from the central navigation. Figure 1b shows examples of lower left
and right lobes for two different patients. Dataset will be made publicly available upon article acceptance.

Additionally, the data is processed before training to prepare the inputs and ground truths. For every
two pair of images in a sequence, the difference in position and rotation between them is computed. Both
components, the difference in position ∆p = (∆x,∆y,∆z) ∈ R3, and the difference in orientation ∆o =
(∆α,∆β,∆γ) ∈ R3, define the difference in pose, ∆P = (∆p,∆o) ∈ R6, which constitutes the ground truth
of the system. That is, we predict the difference in position and orientation between two images, thus
allowing both tracking and calibration. No standardization is applied to the ground truths, while images
are standardized through mean subtraction and standard deviation division.

3. Metrics

In order to train and validate a system for pose estimation, we need metrics for assessing the error of
the predicted rotation and position. As those are two separate components, we can have different metrics
for each of them.

The most common choice are either the mean squared error (MSE), when the metric is a loss function,
or its equivalent, euclidean norm (L2), when it is an evaluation metric. Although they naturally fit the
euclidean space of positions, these functions do not necessarily suit the rotation space. An alternative used
in the literature is the direction error (DE) (Merritt et al., 2013),

DE = cos−1(vE · vGT ) (1)

where vE and vGT are, respectively, the estimated and ground truth direction vectors. Such direction
vectors are computed from the rotation matrix, R, and a unitary direction vector, u, as:

2CVC CPAP Study Database
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(a) Base network (b) Base network plus recurrence

(c) Base network plus convolutional recurrence (d) Base network plus 3d convolutions

Figure 2: Architectures for bronchoscopy callibration and tracking. (a) is the baseline network without temporal information
management, as in (Sganga et al., 2019a). (b, c, d) include different mechanisms to manage temporal information across
predictions.

vr = R · u = cβcγ −cβsγ sβ
sαsβcγ + cαsγ −sαsβsγ + cαcγ −sαcβ
−cαsβcγ + sαsγ cαsβsγ + sαsγ cαcβ

uxuy
uz


where, ci and si are, respectively, the cosinus and sinus of angle i. A common choice for u is the look-at
vector of the virtual camera, usually given by the x-axis, so that:

vr = R ·

1
0
0

 =

 cβcγ
sαsβcγ + cαsγ
−cαsβcγ + sαsγ


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The main issue with such function is that the choice of u affects the perceived rotations. That is, by selecting
an specific u, the system is oblivious to the rotations through that direction.

To remedy such problem, we present an alternative metric, the cosinus error (CE):

CE =
1

3
((1− cos(∆αE −∆αGT ))+

(1− cos(∆βE −∆βGT ))+

(1− cos(∆γE −∆γGT )))

where (αE , βE , γE), (αGT , βGT , γGT ) are, respectively the estimated and ground truth Euler angles.
Importantly, all metrics can be used both as loss for training, as well as metric for evaluation of perfor-

mance.

4. Relative Pose Estimation

Given a sequence of L image pairs at time t, (It1, I
t
2) ∈ D1×D2, for D1, D2 a source and target domains,

a pose estimation system can be formulated as a function, fP , predicting the difference in pose between the
image pairs:

fP : (It1, I
t
2)t=Lt=0 −→ (∆Pt)t=Lt=0 , Iti ∈ Di,∆P t ∈ R6 (2)

where each domain Di = RCi×Hi×Wi represents RGB images (Ci = 3) of size Hi ×Wi, and the difference
in pose for each time t is a vector ∆P t = (∆pt,∆ot) = (∆xt,∆yt,∆zt,∆αt,∆βt,∆γt) representing the
difference in (x, y, z) position coordinates and (α, β, γ) Euler angles.

In case It1, It2 are consecutive frames of the same path, fP is modelling a tracker, and the change in pose
through the sequence would be given by accumulating the differences estimated across the video:

PL = P0 +

L∑
t=0

∆Pt (3)

where P0 corresponds to the initial pose vector, and PL to the pose vector after the accumulated changes
of the L pose differences.

If It1, It2 correspond to frames of different paths, fP would be modelling a pose callibration.
The network loss is given by the addition of the position and rotation metrics:

L = Lp + Lo (4)

where p refers to position and o to orientation. The position loss Lp is given by the MSE error, while for the
orientation loss Lo we used the three metrics (MSE, DE and the proposed CE) described in the previous
section.

In any case (tracking or callibration), if the input sequence has more than two image pairs (L > 0), there
are several ways of processing such temporal information in order to improve the difference in pose estimation.
All architectures follow Equation 3 and their scheme can be found at Figure 2. The different architectures
used are: a base network working only between two images, and 3 different ways of incorporating temporal
information across frames. Next, configuration details for each architecture are presented, altogether with
the population modeling approach.

4.1. Base Network (Baseline)

The baseline network is a static estimation of pose differences from a single image pair (L = 0 in
Equation 2). Each image is passed through a convolution backbone, specifically an EfficientNet-B0 (Tan
and Le, 2020). Then both feature maps are concatenated and passed through a convolutional block and a
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ShuffleNet block (Ma et al., 2018), to obtain a suitable performance/latency trade-off. Finally, the resulting
feature map is flattened and passed through a fully connected layer to obtain the difference pose prediction
between the two images. An illustration of the overall components of the base network can be found at
Figure 2a.

4.2. Recurrence (Baseline + LSTM)

The previous network does not include temporal management. To be able to include such information,
the first modification to the base network consists in the addition of a recurrent LSTM (Hochreiter and
Schmidhuber, 1997b) (Long Short Term Memory) module after the ShuffleNet block. Such convolutional
plues recurrent network type can well exploit temporal information, and thus it has been successfully applied
to video tasks, such as object tracking (Ning et al., 2017), action recognition (Ullah et al., 2018) or video
captioning (Jin et al., 2019).

For every pair of images in the sequence we obtain a group of feature maps. Each one is flattened and a
vector, v, of dimension (L,F ), is built, where L is the number of image pairs and F the size of the flattened
feature maps. Such vector, v, is the input for the LSTM block. At each step, l from the sequence of L image
pairs, the output vector from the LSTM cell is forwarded to a fully connected layer, which finally delivers
the difference pose vector. An illustration of the mentioned module is found at Figure 2b.

4.3. Convolutional recurrence (Baseline + ConvRNN)

In the previous architecture recurrence required flattening the feature maps so they could be fed to the
LSTM. Such flattening destroys visual relations present in the feature maps, thus losing information. To
avoid such loss, a possibility is to use a convolutional LSTM (Shi et al., 2015), where vectorial operations
are substituted by convolution ones. In such way, we are able to maintain the visual structure during
recurrence. Flattening, however, is still needed to produce the pose prediction through a fully connected
layer after Conv-LSTM. In Figure 2c, an illustration of the overall structure is presented.

4.4. 3D Convolution (Baseline + 3D)

An alternative to recurrence for managing temporal information is 3D convolutions (Ji et al., 2018; Guo
et al., 2019). Once all the feature representations from all image pairs in the sequence are generated, a 4D
tensor of size (L,C,H,W ) can be built.

Such tensor is fed to a block of two (Conv3D, BatchNorm, ReLU) layers. Working at once with the
feature maps coming from all image pairs allows to learn relations among them, producing improvements
in angle and position estimation. After the 3D convolution block, the result is flattened and fed to a fully
connected layer to predict the final difference pose prediction. In Figure 2d an illustration of the overall
network can be seen.

4.5. Approaches for Population

Once the data has been prepared as specified in Section 2, we define two different approaches to prepare
our training and validation scheme. The purpose is to establish the attainable degree of generalization of
the models developed in two different industrial settings.

First, the population or cross-subject setting, in which a patient is selected as validation and the rest
of patients are used for training. This case, in an industrial environment, would correspond to building a
general model with different patients and expect enough generalization of the model as to apply it directly
to an unseen patient.

And second, the personalized setting, where validation is performed over the same patients as training,
but with different sequences. Such procedure, in an industrial environment, implies that every time we
include a patient, models should be retrained. Hence, although the procedure would be more cumbersome,
less generalization effort is expected from models.
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Baseline Position Error Rotation Error
Loss L2 L2 DE CE

LpMSE + LoMSE 9.657 ± 5.777 19.037 ± 51.06 1.608 ± 0.658 0.803 ± 0.357
LpMSE + LoDE 8.426 ± 4.569 45.196 ± 46.648 1.566 ± 0.63 1.018 ± 0.411
LpMSE + LoCE 7.138 ± 4.547 35.029 ± 47.231 1.477 ± 0.65 0.925 ± 0.937

Baseline + LSTM
Loss L2 L2 DE CE

LpMSE + LoMSE 4.962 ± 2.739 19.779 ± 50.898 1.733 ± 0.567 0.775 ± 0.362
LpMSE + LoDE 6.714 ± 3.495 45.229 ± 47.895 1.528 ± 0.565 1.020 ± 0.424
LpMSE + LoCE 4.515 ± 3.636 36.255 ± 45.839 1.670 ± 0.718 0.791 ± 0.411
Baseline + 3D

Loss L2 L2 DE CE
LpMSE + LoMSE 7.798 ± 4.176 19.499 ± 52.023 1.502 ± 0.726 0.740 ± 0.359
LpMSE + LoDE 8.487 ± 4.757 40.985 ± 45.632 1.572 ± 0.683 1.020 ± 0.411
LpMSE + LoCE 5.068 ± 2.869 36.445 ± 48.947 1.678 ± 0.534 0.7595 ± 0.356

Baseline + ConvRNN
Loss L2 L2 DE CE

LpMSE + LoMSE 4.550 ± 3.352 21.163 ± 50.795 1.609 ± 0.665 0.669 ± 0.348
LpMSE + LoDE 6.088 ± 4.686 42.226 ± 46.591 1.643 ± 0.642 0.963 ± 0.441
LpMSE + LoCE 4.487 ± 3.945 34.881 ± 48.553 1.487 ± 0.663 0.809 ± 0.394

Table 2: Personalized data scheme. Results for the different loss and architecture combinations. Values show mean and
standard deviation computed among all the paths in the validation set. Results are computed after accumulating tracking
through the whole validation paths and only by evaluating last position and orientation, as indicated in Equation 3. Bold font
indicates best value inside group of row and column. Red indicates best of column, and blue second best of column.

Baseline Position Error Rotation Error
Loss L2 L2 DE CE

LpMSE + LoMSE 0.447 ± 0.276 1.142 ± 8.339 0.649 ± 0.513 0.147 ± 0.201
LpMSE + LoDE 0.459 ± 0.282 2.529± 8.465 0.830 ± 0.590 0.472 ± 0.392
LpMSE + LoCE 0.395 ± 0.268 1.749 ± 8.508 0.735 ± 0.571 0.188 ± 0.237

Baseline + LSTM
Loss L2 L2 DE CE

LpMSE + LoMSE 0.353 ± 0.221 1.092 ± 8.349 0.611 ± 0.501 0.136 ± 0.195
LpMSE + LoDE 0.421 ± 0.241 2.516 ± 8.488 0.816 ± 0.602 0.446 ± 0.371
LpMSE + LoCE 0.371 ± 0.240 1.888 ± 8.157 0.790 ± 0.599 0.213 ± 0.250
Baseline + 3D

Loss L2 L2 DE CE
LMSE + LMSE 0.443 ± 0.295 0.916 ± 8.341 0.503 ± 0.416 0.093 ± 0.149
LMSE + LDE 0.467 ± 0.289 2.293 ± 8.841 0.880 ± 0.590 0.386 ± 0.327
LMSE + LCE 0.397 ± 0.252 1.592 ±8.508 0.724 ± 0.559 0.167 ± 0.221

Baseline + ConvRNN
Loss L2 L2 DE CE

LMSE + LMSE 0.368 ± 0.245 1.165 ± 8.348 0.655 ± 0.502 0.153 ± 0.197
LpMSE + LoDE 0.432 ± 0.260 2.480 ± 8.449 0.888 ± 0.635 0.452 ± 0.361
LMSE + LCE 0.355 ± 0.265 1.80 ± 8.522 0.732 ± 0.537 0.195 ± 0.242

Table 3: Personalized data scheme. Results for the different loss and architecture combinations evaluated at every image pair.
Values show mean and standard deviation computed among all the pairs of images in the paths of the validation set. Bold font
indicates best value inside group of row and column. Red indicates best of column, and blue second best of column.
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Position Error Rotation Error
Network Loss L2 L2 DE CE

Baseline + LSTM LMSE + LMSE 16.398 ± 7.215 29.683 ± 50.605 1.659 ± 0.691 0.863 ± 0.391
Baseline + 3D LMSE + LMSE 18.245 ± 8.158 24.104 ± 52.498 1.583 ± 0.734 0.717 ± 0.355

Baseline + ConvRNN LMSE + LCE 14.941 ± 7.886 37.561 ± 48.519 1.580 ± 0.666 0.848 ± 0.388

Table 4: Cross-subject data scheme. Results for loss and architecture combinations that obtained best results in the personalized
data scheme. Results are computed after accumulating tracking through the whole validation path and only by evaluating last
position and orientation, as indicated in Equation 3. Values show mean and standard deviation computed among all the paths
in the validation set. Red indicates best value in column, and blue column’s second best.

Position Error Rotation Error
Network Loss L2 L2 DE CE

Baseline + LSTM LpMSE + LoMSE 0.680 ± 0.319 1.901 ± 9.913 1.017 ± 0.659 0.324 ± 0.279
Baseline + 3D LpMSE + LoMSE 0.711 ± 0.339 1.314 ± 9.905 0.739 ± 0.547 0.172 ± 0.203

Baseline + ConvRNN LpMSE + LoCE 0.678 ± 0.334 2.348 ± 9.965 1.133 ± 0.712 0.392 ± 0.305

Table 5: Cross-subject data scheme. Results for loss and architecture combinations that obtained best results in the personalized
data scheme. Results are computed for every pair of images. Values show mean and standard deviation computed among all
the pairs of images in the paths of the validation set. Red indicates best of column, and blue column’s second best.

5. Experimental setup

In this section we present the experimental details and the proposed experiments using the different
configurations stated in Section 4.

Three different experiments are defined:

1. Model Optimization. Loss and architecture combinations are trained and validated on a personal-
ized data setting.

2. Model generalization. Best architecture and loss combinations from Experiment 1 are selected.
They are trained and tested on a population data scheme with a leave-one-out validation structure.

3. Model comparison with SoA. To assess the advantages of the proposed strategy, the best model
selected in the first and second experiments is compared to a SoA method.

For each experiment we have selected different groups of data. Specifically, in the case of personalized
data scheme, we have selected 15 trajectories per patient and lobe for training, reserving a total of 3 for
validation. Each sequence has been divided into a set of pairs of images. In the case of temporal information
experiments, we have selected the same number of sequences, but sequences have been split into chunks of
10 image pairs. Additionally, in the population data scheme, we have selected 15 trajectories per patient
and lobe for 4 patients for training, and 15 trajectories of 1 patient for validation.

Networks have been trained using two NVIDIA RTX 2080ti, with Pytorch Lightning as a framework
(Falcon and The PyTorch Lightning team, 2019). Adam optimizer with a learning rate of 1e−4 has been
used and early stopping based on validation loss evolution has been applied. Dropout has been added to
the ShuffleNet blocks to avoid overfitting. In the case of temporal learning, networks have been trained
using truncated back propagation through time (T-BPTT). A batch size of 512 has been used in all the
experiments. With regards to evaluation metrics, the same functions used as losses are used for evaluation.
Namely, L2 for position, and L2, DE, and CE, for orientation.

6. Results and discussion

In the next section we present the results corresponding to the three experiments stated in Section 5.
Code used to build the system and reproduce experiment results will be published upon acceptance.
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Network Param. (M) L2 (voxel) CE
OffsetNet (Sganga et al., 2019c) 43.6 5.694 ± 4.634 0.994 ± 0.342

BronchoTrack 14.1 4.994 ± 4.442 0.808 ± 0.354

Table 6: Comparison with state of the art (SoA) method (Sganga et al., 2019c) for bronchoscopy tracking in terms of position
error (L2), angle error, and the number of parameters. Results are computed after accumulating tracking through the whole
test paths and only by evaluating last position and orientation, as indicated in Equation 3. Values show mean and standard
deviation computed among all the paths in the test set.
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Figure 3: Sample position tracking comparison with SoA method, OffsetNet (green), our method (orange), and the ground
truth (blue). Axis coordinates are defined in voxel units, with the (0, 0, 0) being in the trachea.

6.1. Model Optimization

Table 2 shows results (mean ± standard deviation) in the validation set for the different loss and archi-
tecture combinations evaluated with the different metrics using the personalized data scheme. Predictions
for each trajectory have been accumulated and the metrics are evaluated on the resulting accumulation.

Regardless of the loss, the best values with regards to position error are achieved, with notable difference,
by those architectures with temporal information management, indicating the importance of it. Moreover,
the combination of ME + CE losses provides the first and second best results, proving its usefulness for
better positioning. With regards to rotation error, we can point several interesting points. First, temporal
management information structures notably improve CE metric result, with the a great improvement with
Convolutional RNN. Second, MSE seems to provide better results in both L2 and CE metrics, and with
the exception of DE. And, finally, in the case of DE and L2 temporal information information management
architectures seem not to provide any benefits.

Differently to Table 2, Table 3 shows the results for the same configurations but evaluating over image
pairs and not whole trajectories. In this case, the loss combination MSE + CE still provides the best
position estimation and best orientation differences are provided by the MSE + MSE loss, in concordance
with results in Table 2 . In this case, however, the 3D convolution architecture shows superior performance
in orientation estimation.

In general two conclusions can be obtained from Table 2 and Table 3 results. First, temporal management
information structures help improve both rotation and position predictions, specially in the case of ConvRNN
architecture for position and 3D for orientation. Secondly, the loss combination MSE + CE delivers better
results for position prediction, while MSE + MSE improves rotation precision.

6.2. Model generalization

In Tables 4 and 5 we show results for the cross-subject or population data scheme defined in Section 4.5.
Architecture and loss combinations are selected from the results in the personalized data scheme evaluation.
Table 4 shows results evaluated at the last position and orientation after accumulating trajectory changes,
and Table 5 shows results for each image pair.
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As seen, with regards to position error, the combination of ConvRNN and MSE + CE loss delivers
notably improved results compared to the other two alternatives, showcasing its better generalization capa-
bilities with unseen patients. With regards to orientation errors, the 3D convolution mechanism provides,
with difference, best results in orientation, both with metrics L2 and CE. Followed by ConvRNN in the
accumulated case and by LSTM in the image-pair case. Hence, it can be stated that convRNN plus MSE
+ CE as loss is the best option for position prediction, while 3D convolutions plus MSE + MSE is the best
one for rotation prediction.

Importantly, another fact that can be observed is the difference in results between the personalized
(Tables 2 and 3) and the population data schemes (Tables 4 and 5). In the former, results are much better
for both for orientation and position with metric L2, although the effect in CE and DE is smaller. Such
point showcases the benefits of the personalized model, and the usefulness of retraining the model with each
patient information.

6.3. Comparison to State-of-the-art

Finally, we compare our model with current SoA for bronchoscopy tracking, OffsetNet (Sganga et al.,
2019b), implementing it as described in the original publication. For such comparison we build on our best
results in previous sections and choose as loss the combination LpMSE + LoCE , and as architecture, the
convolutional recurrent network. We call this network BronchoTrack. Both networks are trained and tested
in an intra-patient setting, using sequences of 10 steps long for training, and full sequences for testing.

In Table 6 we show results for the comparison in the test set. As shown our network is better for both
position and orientation tracking. Moreover, it has a notably reduced number of parameters: more than 3x
times less parameters.

In Figure 3 we further compare both models by showing the accumulated position tracking for sample
trajectories in the test set. As seen our model is able to closely match the ground truth sequence while
OffsetNet deviates more and struggles to follow the ground truth path.

7. Conclusions

In the present study we have presented several contributions to bronchoscopy tracking. We have built a
synthetic dataset to allow for fair comparison between methods and be able to train data-hungry models.
Two different population approaches for training learning methods have been analyzed, concluding with the
benefits of a personalized setting. We also have experimented with the configuration of a neural network
model with regards to the loss function and the temporal information management. Finally, when comparing
to a SoA method, better results have been obtained while using less parameters. All in all, there are still
important next steps to take to improve current results. Such steps could involve the study of transfer
learning to real bronchoscopy videos, for example with the use of generative adversarial networks, or the
adaptation to the specific conditions of a medical setting in terms of hardware and resources.
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