toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate edit   pdf
openurl 
  Title Is there a pattern of Chromosome territoriality along mice spermatogenesis? Type Conference Article
  Year 2017 Publication 3rd Spanish MeioNet Meeting Abstract Book Abbreviated Journal  
  Volume Issue Pages 55-56  
  Keywords  
  Abstract  
  Address Miraflores de la Sierra; Madrid; June 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MEIONET  
  Notes IAM; 600.096; 600.145 Approved no  
  Call Number (up) Admin @ si @ Serial 2958  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number (up) Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil edit  doi
openurl 
  Title Mental Workload Detection Based on EEG Analysis Type Conference Article
  Year 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal  
  Volume 339 Issue Pages 268-277  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.  
  Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
 
  Address Virtual; October 20-22 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number (up) Admin @ si @ Serial 3723  
Permanent link to this record
 

 
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author Sonia Baeza; R.Domingo; M.Salcedo; G.Moragas; J.Deportos; I.Garcia Olive; Carles Sanchez; Debora Gil; Antoni Rosell edit  url
openurl 
  Title Artificial Intelligence to Optimize Pulmonary Embolism Diagnosis During Covid-19 Pandemic by Perfusion SPECT/CT, a Pilot Study Type Journal Article
  Year 2021 Publication American Journal of Respiratory and Critical Care Medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number (up) Admin @ si @ BDS2021 Serial 3591  
Permanent link to this record
 

 
Author Francesco Brughi; Debora Gil; Llorenç Badiella; Eva Jove Casabella; Oriol Ramos Terrades edit   pdf
doi  isbn
openurl 
  Title Exploring the impact of inter-query variability on the performance of retrieval systems Type Conference Article
  Year 2014 Publication 11th International Conference on Image Analysis and Recognition Abbreviated Journal  
  Volume 8814 Issue Pages 413–420  
  Keywords  
  Abstract This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.  
  Address Algarve; Portugal; October 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-11757-7 Medium  
  Area Expedition Conference ICIAR  
  Notes IAM; DAG; 600.060; 600.061; 600.077; 600.075 Approved no  
  Call Number (up) Admin @ si @ BGB2014 Serial 2559  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; I.Garcia Olive; M.Salcedo; J.Deportos; Carles Sanchez; Guillermo Torres; G.Moragas; Antoni Rosell edit  doi
openurl 
  Title A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year 2022 Publication EJNMMI Physics Abbreviated Journal EJNMMI-PHYS  
  Volume 9 Issue 1, Article 84 Pages 1-17  
  Keywords  
  Abstract Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
 
  Address 5 dec 2022  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ BGG2022 Serial 3759  
Permanent link to this record
 

 
Author Jorge Bernal; Debora Gil; Carles Sanchez; F. Javier Sanchez edit   pdf
doi  isbn
openurl 
  Title Discarding Non Informative Regions for Efficient Colonoscopy Image Analysis Type Conference Article
  Year 2014 Publication 1st MICCAI Workshop on Computer-Assisted and Robotic Endoscopy Abbreviated Journal  
  Volume 8899 Issue Pages 1-10  
  Keywords Image Segmentation; Polyps, Colonoscopy; Valley Information; Energy Maps  
  Abstract In this paper we present a novel polyp region segmentation method for colonoscopy videos. Our method uses valley information associated to polyp boundaries in order to provide an initial segmentation. This first segmentation is refined to eliminate boundary discontinuities caused by image artifacts or other elements of the scene. Experimental results over a publicly annotated database show that our method outperforms both general and specific segmentation methods by providing more accurate regions rich in polyp content. We also prove how image preprocessing is needed to improve final polyp region segmentation.  
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-13409-3 Medium  
  Area Expedition Conference CARE  
  Notes MV; IAM; 600.044; 600.047; 600.060; 600.075 Approved no  
  Call Number (up) Admin @ si @ BGS2014b Serial 2503  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Carles Sanchez; Guillermo Torres; Ignasi Garcia Olive; Ignasi Guasch; Samuel Garcia Reina; Felipe Andreo; Jose Luis Mate; Jose Luis Vercher; Antonio Rosell edit  openurl
  Title Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung Type Conference Article
  Year 2023 Publication SEPAR Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Granada; Spain; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SEPAR  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ BGS2023 Serial 3951  
Permanent link to this record
 

 
Author Francesco Brughi edit  openurl
  Title Artistic Heritage Motive Retrieval: an Explorative Study Type Report
  Year 2013 Publication CVC Technical Report Abbreviated Journal  
  Volume 176 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number (up) Admin @ si @ Bru2013 Serial 2410  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: