toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Antoni Rosell edit  openurl
  Title Advances in Artificial Intelligence – How Lung Cancer CT Screening Will Progress? Type Abstract
  Year 2019 Publication World Lung Cancer Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Invited speaker  
  Address Barcelona; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IASLC WCLC  
  Notes IAM; Approved no  
  Call Number Admin @ si @ GiR2019 Serial 3361  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque edit  isbn
openurl 
  Title An Endoscopic Navigation System for Lung Cancer Biopsy Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room.
 
  Address October 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Carles Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-0-2 Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Est2019 Serial 3392  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Endowing Canonical Geometries to Cardiac Structures Type Book Chapter
  Year 2010 Publication Statistical Atlases And Computational Models Of The Heart Abbreviated Journal  
  Volume 6364 Issue Pages 124-133  
  Keywords  
  Abstract International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010b Serial 1515  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Burnat; Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  isbn
openurl 
  Title Structure-Preserving Smoothing of Biomedical Images Type Conference Article
  Year 2009 Publication 13th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 5702 Issue Pages 427-434  
  Keywords non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography.  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-03766-5 Medium  
  Area Expedition Conference CAIP  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GHB2009 Serial 1527  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit   pdf
url  doi
isbn  openurl
  Title Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling Type Book Chapter
  Year 2003 Publication Energy Minimization Methods In Computer Vision And Pattern Recognition Abbreviated Journal LNCS  
  Volume 2683 Issue Pages 357-372  
  Keywords Initial condition; Convex shape; Non convex analysis; Increase; Segmentation; Gradient; Standard; Standards; Concave shape; Flow models; Tracking; Edge detection; Curvature  
  Abstract Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inexion points are created. In spite of the improvement of the external energy by the gradient vector ow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature ow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector ow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Berlin Place of Publication Lisbon, PORTUGAL Editor Springer, B.  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 3-540-40498-8 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2003b Serial 1535  
Permanent link to this record
 

 
Author Ole Vilhelm-Larsen; Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Guidelines for choosing optimal parameters of elasticity for snakes Type Book Chapter
  Year 1995 Publication Computer Analysis Of Images And Patterns Abbreviated Journal LNCS  
  Volume 970 Issue Pages 106-113  
  Keywords  
  Abstract This paper proposes a guidance in the process of choosing and using the parameters of elasticity of a snake in order to obtain a precise segmentation. A new two step procedure is defined based on upper and lower bounds on the parameters. Formulas, by which these bounds can be calculated for real images where parts of the contour may be missing, are presented. Experiments on segmentation of bone structures in X-ray images have verified the usefulness of the new procedure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;IAM Approved no  
  Call Number IAM @ iam @ LRM1995b Serial 1558  
Permanent link to this record
 

 
Author Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti edit   pdf
url  doi
isbn  openurl
  Title Symbol recognition: current advances and perspectives Type Book Chapter
  Year 2002 Publication Graphics Recognition Algorithms And Applications Abbreviated Journal LNCS  
  Volume 2390 Issue Pages 104-128  
  Keywords  
  Abstract The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.  
  Address London, UK  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor Dorothea Blostein and Young- Bin Kwon  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 3-540-44066-6 Medium  
  Area Expedition Conference GREC  
  Notes DAG; IAM; Approved no  
  Call Number IAM @ iam @ LVS2002 Serial 1572  
Permanent link to this record
 

 
Author Misael Rosales; Petia Radeva; Oriol Rodriguez; Debora Gil edit   pdf
doi  openurl
  Title Suppression of IVUS Image Rotation. A Kinematic Approach Type Book Chapter
  Year 2005 Publication Functional Imaging and Modeling of the Heart Abbreviated Journal LNCS  
  Volume 3504 Issue Pages 889-892  
  Keywords  
  Abstract IntraVascular Ultrasound (IVUS) is an exploratory technique used in interventional procedures that shows cross section images of arteries and provides qualitative information about the causes and severity of the arterial lumen narrowing. Cross section analysis as well as visualization of plaque extension in a vessel segment during the catheter imaging pullback are the technique main advantages. However, IVUS sequence exhibits a periodic rotation artifact that makes difficult the longitudinal lesion inspection and hinders any segmentation algorithm. In this paper we propose a new kinematic method to estimate and remove the image rotation of IVUS images sequences. Results on several IVUS sequences show good results and prompt some of the clinical applications to vessel dynamics study, and relation to vessel pathology.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin / Heidelberg Place of Publication Editor Frangi, Alejandro and Radeva, Petia and Santos, Andres and Hernandez, Monica  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title (up) LNCS  
  Series Volume 3504 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ RRR2005 Serial 1645  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; David Roche; Monica M. S. Matsumoto; Sergio S. Furuie edit   pdf
url  openurl
  Title Inferring the Performance of Medical Imaging Algorithms Type Conference Article
  Year 2011 Publication 14th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 6854 Issue Pages 520-528  
  Keywords Validation, Statistical Inference, Medical Imaging Algorithms.  
  Abstract Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
 
  Address Sevilla  
  Corporate Author Thesis  
  Publisher Springer-Verlag Berlin Heidelberg Place of Publication Berlin Editor Pedro Real; Daniel Diaz-Pernil; Helena Molina-Abril; Ainhoa Berciano; Walter Kropatsch  
  Language Summary Language Original Title  
  Series Editor Series Title L Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ HGR2011 Serial 1676  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru; Miguel Angel Gonzalez Ballester edit   pdf
doi  isbn
openurl 
  Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Book Chapter
  Year 2012 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal  
  Volume 7029 Issue Pages 223–230  
  Keywords medial manifolds, abdomen.  
  Abstract Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D
objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial
manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our
method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs,
exploring the use of medial manifolds for the representation of multi-organ relations.
 
  Address Toronto; Canada;  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Berlin Editor H. Yoshida et al  
  Language English Summary Language English Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-28556-1 Medium  
  Area Expedition Conference ABDI  
  Notes IAM;MV Approved no  
  Call Number IAM @ iam @ VGB2012 Serial 1834  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: