toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Jaume Garcia; Manuel Vazquez; Ruth Aris; Guillaume Houzeaux edit   pdf
url  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Venezia (Italia) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN B-31470-08 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGV2008c Serial 1521  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti edit   pdf
doi  openurl
  Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
  Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC  
  Volume 58 Issue 1 Pages 60-72  
  Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging  
  Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-3010 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ HGG2011 Serial 1546  
Permanent link to this record
 

 
Author Enric Marti; Jaume Rocarias; Debora Gil; Aura Hernandez-Sabate; Jaume Garcia; Carme Julia; Marc Vivet edit   pdf
openurl 
  Title Uso de recursos virtuales en Aprendizaje Basado en Proyectos. Una experiencia en la asignatura de Gráficos por Computador Type Miscellaneous
  Year 2009 Publication I Congreso de Docencia Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords Aprendizaje Basado en Proyectos; Project Based Learning; Aprendizaje Cooperativo; Recursos Virtuales para el Aprendizaje Cooperativo; Moodle  
  Abstract Presentamos una experiencia en Aprendizaje Basado en Proyectos (ABP) realizada los últimos cuatro años en Gráficos por Computador 2, asignatura de Ingeniería Informática, de la Escuela Técnica Superior de Ingeniería (ETSE) de la Universidad Autónoma de Barcelona (UAB). Utilizamos un entorno Moodle adaptado por nosotros llamado Caronte para poder gestionar la documentación generada en ABP. Primero se presenta la asignatura, basada en dos itinerarios para cursarla: ABP y TPPE (Teoría, Problemas, Prácticas, Examen). El alumno debe escoger uno de ellos. Ambos itinerarios generan una cantidad importante de documentación (entregas de trabajos y prácticas, correcciones, ejercicios, etc.) a gestionar. En la comunicación presentamos los espacios electrónicos Moodle de ambos itinerarios. Finalmente, mostramos los resultados de encuestas realizadas a los alumnos para finalmente exponer las conclusiones de la experiencia en ABP y el uso de Moodle, así como plantear mejoras y temas de discusión.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Vigo (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MRG2009a Serial 1602  
Permanent link to this record
 

 
Author Ferran Poveda; Jaume Garcia; Enric Marti; Debora Gil edit   pdf
openurl 
  Title Validation of the myocardial architecture in DT-MRI tractography Type Conference Article
  Year 2010 Publication Medical Image Computing in Catalunya: Graduate Student Workshop Abbreviated Journal  
  Volume Issue Pages 29-30  
  Keywords  
  Abstract Deep understanding of myocardial structure may help to link form and funcion of the heart unraveling crucial knowledge for medical and surgical clinical procedures and studies. In this work we introduce two visualization techniques based on DT-MRI streamlining able to decipher interesting properties of the architectural organization of the heart.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Girona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAT  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PGM2010 Serial 1626  
Permanent link to this record
 

 
Author Sandra Pujades;Francesc Carreras;Manuel Ballester; Jaume Garcia; Debora Gil edit   pdf
openurl 
  Title A Normalized Parametric Domain for the Analysis of the Left Ventricular Function Type Conference Article
  Year 2008 Publication Proceedings of the Third International Conference on Computer Vision Theory and Applications (VISAPP’08) Abbreviated Journal  
  Volume 1 Issue Pages 267-274  
  Keywords Helical Ventricular Myocardial Band; Myocardial Fiber; Tagged Magnetic Resonance; HARP; Optical Flow Variational Framework; Gabor Filters; B-Splines.  
  Abstract Impairment of left ventricular (LV) contractility due to cardiovascular diseases is reflected in LV motion patterns. The mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fiber. The helical ventricular myocardial band (HVMB) concept describes the myocardial muscle as a unique muscular band that twists in space in a non homogeneous fashion. The 3D anisotropy of the ventricular band fibers suggests a regional analysis of the heart motion. Computation of normality models of such motion can help in the detection and localization of any cardiac disorder. In this paper we introduce, for the first time, a normalized parametric domain that allows comparison of the left ventricle motion across patients. We address, both, extraction of the LV motion from Tagged Magnetic Resonance images, as well as, defining a mapping of the LV to a common normalized domain. Extraction of normality motion patterns from 17 healthy volunteers shows the clinical potential of our LV parametrization.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGP2008 Serial 1627  
Permanent link to this record
 

 
Author David Rotger; Misael Rosales; Jaume Garcia; Oriol Pujol ; Josefina Mauri; Petia Radeva edit   pdf
openurl 
  Title Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion Type Journal Article
  Year 2003 Publication Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 65-68  
  Keywords  
  Abstract AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ RRG2003 Serial 1647  
Permanent link to this record
 

 
Author Albert Andaluz; Francesc Carreras; Debora Gil; Jaume Garcia edit   pdf
url  openurl
  Title Una aplicació amigable pel càlcul de indicadors clínics del ventricle esquerre Type Miscellaneous
  Year 2010 Publication Forum Biocat 2010 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Lonja de Mar,Barcelona (Spain)  
  Corporate Author CVC Thesis  
  Publisher (up) Biocat Place of Publication Barcelona Editor  
  Language Catalan Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ ACG2010 Serial 1483  
Permanent link to this record
 

 
Author Jaume Garcia edit   pdf
openurl 
  Title Statistical Models of the Architecture and Function of the Left Ventricle Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular Diseases, specially those affecting the Left Ventricle (LV), are the leading cause of death in developed countries with approximately a 30% of all global deaths. In order to address this public health concern, physicians focus on diagnosis and therapy planning. On one hand, early and accurate detection of Regional Wall Motion Abnormalities (RWMA) significantly contributes to a quick diagnosis and prevents the patient to reach more severe stages. On the other hand, a thouroughly knowledge of the normal gross anatomy of the LV, as well as, the distribution of its muscular fibers is crucial for designing specific interventions and therapies (such as pacemaker implanction). Statistical models obtained from the analysis of different imaging modalities allow the computation of the normal ranges of variation within a given population. Normality models are a valuable tool for the definition of objective criterions quantifying the degree of (anomalous) deviation of the LV function and anatomy for a given subject. The creation of statistical models involve addressing three main issues: extraction of data from images, definition of a common domain for comparison of data across patients and designing appropriate statistical analysis schemes. In this PhD thesis we present generic image processing tools for the creation of statistical models of the LV anatomy and function. On one hand, we use differential geometry concepts to define a computational framework (the Normalized Parametric Domain, NPD) suitable for the comparison and fusion of several clinical scores obtained over the LV. On the other hand, we present a variational approach (the Harmonic Phase Flow, HPF) for the estimation of myocardial motion that provides dense and continuous vector fields without overestimating motion at injured areas. These tools are used for the creation of statistical models. Regarding anatomy, we obtain an atlas jointly modelling, both, LV gross anatomy and fiber architecture. Regarding function, we compute normality patterns of scores characterizing the (global and local) LV function and explore, for the first time, the configuration of local scores better suited for RWMA detection.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (up) Ediciones Graficas Rey Place of Publication Editor Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ Gar2009a Serial 1499  
Permanent link to this record
 

 
Author Joel Barajas; Jaume Garcia; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
url  isbn
openurl 
  Title Angle Images Using Gabor Filters in Cardiac Tagged MRI Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 107-114  
  Keywords Angle Images, Gabor Filters, Harp, Tagged Mri  
  Abstract Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.  
  Address Amsterdam; The Netherlands  
  Corporate Author Thesis  
  Publisher (up) IOS Press Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-58603-560-6 Medium  
  Area Expedition Conference CAIRD  
  Notes IAM;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BGC2005; IAM @ iam Serial 595  
Permanent link to this record
 

 
Author Jaume Garcia; Petia Radeva; Francesc Carreras edit   pdf
openurl 
  Title Combining Spectral and Active Shape methods to Track Tagged MRI Type Book Chapter
  Year 2004 Publication Recent Advances in Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages 37-44  
  Keywords MR; tagged MR; ASM; LV segmentation; motion estimation.  
  Abstract Tagged magnetic resonance is a very usefull and unique tool that provides a complete local and global knowledge of the left ventricle (LV) motion. In this article we introduce a method capable of tracking and segmenting the LV. Spectral methods are applied in order to obtain the so called HARP images which encode information about movement and are the base for LV point-tracking. For segmentation we use Active Shapes (ASM) that model LV shape variation in order to overcome possible local misplacements of the boundary. We finally show experiments on both synthetic and real data which appear to be very promising.  
  Address  
  Corporate Author Thesis  
  Publisher (up) IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRC2004 Serial 1488  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: