|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer and Jorma Laaksonen. 2017. Top-Down Deep Appearance Attention for Action Recognition. 20th Scandinavian Conference on Image Analysis.297–309. (LNCS.)
Abstract: Recognizing human actions in videos is a challenging problem in computer vision. Recently, convolutional neural network based deep features have shown promising results for action recognition. In this paper, we investigate the problem of fusing deep appearance and motion cues for action recognition. We propose a video representation which combines deep appearance and motion based local convolutional features within the bag-of-deep-features framework. Firstly, dense deep appearance and motion based local convolutional features are extracted from spatial (RGB) and temporal (flow) networks, respectively. Both visual cues are processed in parallel by constructing separate visual vocabularies for appearance and motion. A category-specific appearance map is then learned to modulate the weights of the deep motion features. The proposed representation is discriminative and binds the deep local convolutional features to their spatial locations. Experiments are performed on two challenging datasets: JHMDB dataset with 21 action classes and ACT dataset with 43 categories. The results clearly demonstrate that our approach outperforms both standard approaches of early and late feature fusion. Further, our approach is only employing action labels and without exploiting body part information, but achieves competitive performance compared to the state-of-the-art deep features based approaches.
Keywords: Action recognition; CNNs; Feature fusion
|
|
|
Juan A. Carvajal Ayala, Dennis Romero and Angel Sappa. 2016. Fine-tuning based deep convolutional networks for lepidopterous genus recognition. 21st Ibero American Congress on Pattern Recognition.467–475. (LNCS.)
Abstract: This paper describes an image classification approach oriented to identify specimens of lepidopterous insects at Ecuadorian ecological reserves. This work seeks to contribute to studies in the area of biology about genus of butterflies and also to facilitate the registration of unrecognized specimens. The proposed approach is based on the fine-tuning of three widely used pre-trained Convolutional Neural Networks (CNNs). This strategy is intended to overcome the reduced number of labeled images. Experimental results with a dataset labeled by expert biologists is presented, reaching a recognition accuracy above 92%.
|
|
|
David Vazquez, Antonio Lopez and Daniel Ponsa. 2012. Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection. 21st International Conference on Pattern Recognition. Tsukuba Science City, JAPAN, IEEE, 3492–3495.
Abstract: Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).
Keywords: Pedestrian Detection; Domain Adaptation; Virtual worlds
|
|
|
Jose Carlos Rubio, Joan Serrat, Antonio Lopez and N. Paragios. 2012. Image Contextual Representation and Matching through Hierarchies and Higher Order Graphs. 21st International Conference on Pattern Recognition.2664–2667.
Abstract: We present a region matching algorithm which establishes correspondences between regions from two segmented images. An abstract graph-based representation conceals the image in a hierarchical graph, exploiting the scene properties at two levels. First, the similarity and spatial consistency of the image semantic objects is encoded in a graph of commute times. Second, the cluttered regions of the semantic objects are represented with a shape descriptor. Many-to-many matching of regions is specially challenging due to the instability of the segmentation under slight image changes, and we explicitly handle it through high order potentials. We demonstrate the matching approach applied to images of world famous buildings, captured under different conditions, showing the robustness of our method to large variations in illumination and viewpoint.
|
|
|
German Ros, Jesus Martinez del Rincon and Gines Garcia-Mateos. 2012. Articulated Particle Filter for Hand Tracking. 21st International Conference on Pattern Recognition.3581–3585.
Abstract: This paper proposes a new version of Particle Filter, called Articulated Particle Filter – ArPF -, which has been specifically designed for an efficient sampling of hierarchical spaces, generated by articulated objects. Our approach decomposes the articulated motion into layers for efficiency purposes, making use of a careful modeling of the diffusion noise along with its propagation through the articulations. This produces an increase of accuracy and prevent for divergences. The algorithm is tested on hand tracking due to its complex hierarchical articulated nature. With this purpose, a new dataset generation tool for quantitative evaluation is also presented in this paper.
|
|
|
Jose Manuel Alvarez, Theo Gevers and Antonio Lopez. 2009. Learning Photometric Invariance from Diversified Color Model Ensembles. 22nd IEEE Conference on Computer Vision and Pattern Recognition.565–572.
Abstract: Color is a powerful visual cue for many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions affecting negatively the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, those reflection models might be too restricted to model real-world scenes in which different reflectance mechanisms may hold simultaneously. Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is taken on input composed of both color variants and invariants. Then, the proposed method combines and weights these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, the fusion method uses a multi-view approach to minimize the estimation error. In this way, the method is robust to data uncertainty and produces properly diversified color invariant ensembles. Experiments are conducted on three different image datasets to validate the method. From the theoretical and experimental results, it is concluded that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning. Further, the method outperforms state-of- the-art detection techniques in the field of object, skin and road recognition.
Keywords: road detection
|
|
|
Jiaolong Xu, Sebastian Ramos, David Vazquez and Antonio Lopez. 2014. Cost-sensitive Structured SVM for Multi-category Domain Adaptation. 22nd International Conference on Pattern Recognition. IEEE, 3886–3891.
Abstract: Domain adaptation addresses the problem of accuracy drop that a classifier may suffer when the training data (source domain) and the testing data (target domain) are drawn from different distributions. In this work, we focus on domain adaptation for structured SVM (SSVM). We propose a cost-sensitive domain adaptation method for SSVM, namely COSS-SSVM. In particular, during the re-training of an adapted classifier based on target and source data, the idea that we explore consists in introducing a non-zero cost even for correctly classified source domain samples. Eventually, we aim to learn a more targetoriented classifier by not rewarding (zero loss) properly classified source-domain training samples. We assess the effectiveness of COSS-SSVM on multi-category object recognition.
Keywords: Domain Adaptation; Pedestrian Detection
|
|
|
Cristhian A. Aguilera-Carrasco, Angel Sappa and Ricardo Toledo. 2015. LGHD: a Feature Descriptor for Matching Across Non-Linear Intensity Variations. 22th IEEE International Conference on Image Processing.178–181.
|
|
|
Josep M. Gonfaus, Xavier Boix, Joost Van de Weijer, Andrew Bagdanov, Joan Serrat and Jordi Gonzalez. 2010. Harmony Potentials for Joint Classification and Segmentation. 23rd IEEE Conference on Computer Vision and Pattern Recognition.3280–3287.
Abstract: Hierarchical conditional random fields have been successfully applied to object segmentation. One reason is their ability to incorporate contextual information at different scales. However, these models do not allow multiple labels to be assigned to a single node. At higher scales in the image, this yields an oversimplified model, since multiple classes can be reasonable expected to appear within one region. This simplified model especially limits the impact that observations at larger scales may have on the CRF model. Neglecting the information at larger scales is undesirable since class-label estimates based on these scales are more reliable than at smaller, noisier scales. To address this problem, we propose a new potential, called harmony potential, which can encode any possible combination of class labels. We propose an effective sampling strategy that renders tractable the underlying optimization problem. Results show that our approach obtains state-of-the-art results on two challenging datasets: Pascal VOC 2009 and MSRC-21.
|
|
|
Jose Manuel Alvarez, Theo Gevers and Antonio Lopez. 2010. 3D Scene Priors for Road Detection. 23rd IEEE Conference on Computer Vision and Pattern Recognition.57–64.
Abstract: Vision-based road detection is important in different areas of computer vision such as autonomous driving, car collision warning and pedestrian crossing detection. However, current vision-based road detection methods are usually based on low-level features and they assume structured roads, road homogeneity, and uniform lighting conditions. Therefore, in this paper, contextual 3D information is used in addition to low-level cues. Low-level photometric invariant cues are derived from the appearance of roads. Contextual cues used include horizon lines, vanishing points, 3D scene layout and 3D road stages. Moreover, temporal road cues are included. All these cues are sensitive to different imaging conditions and hence are considered as weak cues. Therefore, they are combined to improve the overall performance of the algorithm. To this end, the low-level, contextual and temporal cues are combined in a Bayesian framework to classify road sequences. Large scale experiments on road sequences show that the road detection method is robust to varying imaging conditions, road types, and scenarios (tunnels, urban and highway). Further, using the combined cues outperforms all other individual cues. Finally, the proposed method provides highest road detection accuracy when compared to state-of-the-art methods.
Keywords: road detection
|
|