|
David Vazquez, Antonio Lopez, Daniel Ponsa and Javier Marin. 2011. Virtual Worlds and Active Learning for Human Detection. 13th International Conference on Multimodal Interaction. New York, NY, USA, USA, ACM DL, 393–400.
Abstract: Image based human detection is of paramount interest due to its potential applications in fields such as advanced driving assistance, surveillance and media analysis. However, even detecting non-occluded standing humans remains a challenge of intensive research. The most promising human detectors rely on classifiers developed in the discriminative paradigm, i.e., trained with labelled samples. However, labeling is a manual intensive step, especially in cases like human detection where it is necessary to provide at least bounding boxes framing the humans for training. To overcome such problem, some authors have proposed the use of a virtual world where the labels of the different objects are obtained automatically. This means that the human models (classifiers) are learnt using the appearance of rendered images, i.e., using realistic computer graphics. Later, these models are used for human detection in images of the real world. The results of this technique are surprisingly good. However, these are not always as good as the classical approach of training and testing with data coming from the same camera, or similar ones. Accordingly, in this paper we address the challenge of using a virtual world for gathering (while playing a videogame) a large amount of automatically labelled samples (virtual humans and background) and then training a classifier that performs equal, in real-world images, than the one obtained by equally training from manually labelled real-world samples. For doing that, we cast the problem as one of domain adaptation. In doing so, we assume that a small amount of manually labelled samples from real-world images is required. To collect these labelled samples we propose a non-standard active learning technique. Therefore, ultimately our human model is learnt by the combination of virtual and real world labelled samples (Fig. 1), which has not been done before. We present quantitative results showing that this approach is valid.
Keywords: Pedestrian Detection; Human detection; Virtual; Domain Adaptation; Active Learning
|
|
|
Naveen Onkarappa and Angel Sappa. 2011. Space Variant Representations for Mobile Platform Vision Applications. In P. Real, D.D., H. Molina, A. Berciano, W. Kropatsch, ed. 14th International Conference on Computer Analysis of Images and Patterns. Springer Berlin Heidelberg, 146–154.
Abstract: The log-polar space variant representation, motivated by biological vision, has been widely studied in the literature. Its data reduction and invariance properties made it useful in many vision applications. However, due to its nature, it fails in preserving features in the periphery. In the current work, as an attempt to overcome this problem, we propose a novel space-variant representation. It is evaluated and proved to be better than the log-polar representation in preserving the peripheral information, crucial for on-board mobile vision applications. The evaluation is performed by comparing log-polar and the proposed representation once they are used for estimating dense optical flow.
|
|
|
David Vazquez, Antonio Lopez, Daniel Ponsa and Javier Marin. 2011. Cool world: domain adaptation of virtual and real worlds for human detection using active learning. NIPS Domain Adaptation Workshop: Theory and Application. Granada, Spain.
Abstract: Image based human detection is of paramount interest for different applications. The most promising human detectors rely on discriminatively learnt classifiers, i.e., trained with labelled samples. However, labelling is a manual intensive task, especially in cases like human detection where it is necessary to provide at least bounding boxes framing the humans for training. To overcome such problem, in Marin et al. we have proposed the use of a virtual world where the labels of the different objects are obtained automatically. This means that the human models (classifiers) are learnt using the appearance of realistic computer graphics. Later, these models are used for human detection in images of the real world. The results of this technique are surprisingly good. However, these are not always as good as the classical approach of training and testing with data coming from the same camera and the same type of scenario. Accordingly, in Vazquez et al. we cast the problem as one of supervised domain adaptation. In doing so, we assume that a small amount of manually labelled samples from real-world images is required. To collect these labelled samples we use an active learning technique. Thus, ultimately our human model is learnt by the combination of virtual- and real-world labelled samples which, to the best of our knowledge, was not done before. Here, we term such combined space cool world. In this extended abstract we summarize our proposal, and include quantitative results from Vazquez et al. showing its validity.
Keywords: Pedestrian Detection; Virtual; Domain Adaptation; Active Learning
|
|
|
Miguel Oliveira, Angel Sappa and V.Santos. 2011. Unsupervised Local Color Correction for Coarsely Registered Images. IEEE conference on Computer Vision and Pattern Recognition.201–208.
Abstract: The current paper proposes a new parametric local color correction technique. Initially, several color transfer functions are computed from the output of the mean shift color segmentation algorithm. Secondly, color influence maps are calculated. Finally, the contribution of every color transfer function is merged using the weights from the color influence maps. The proposed approach is compared with both global and local color correction approaches. Results show that our method outperforms the technique ranked first in a recent performance evaluation on this topic. Moreover, the proposed approach is computed in about one tenth of the time.
|
|
|
Mohammad Rouhani and Angel Sappa. 2011. Implicit B-Spline Fitting Using the 3L Algorithm. 18th IEEE International Conference on Image Processing.893–896.
|
|
|
Mohammad Rouhani and Angel Sappa. 2011. Correspondence Free Registration through a Point-to-Model Distance Minimization. 13th IEEE International Conference on Computer Vision.2150–2157.
Abstract: This paper presents a novel formulation, which derives in a smooth minimization problem, to tackle the rigid registration between a given point set and a model set. Unlike most of the existing works, which are based on minimizing a point-wise correspondence term, we propose to describe the model set by means of an implicit representation. It allows a new definition of the registration error, which works beyond the point level representation. Moreover, it could be used in a gradient-based optimization framework. The proposed approach consists of two stages. Firstly, a novel formulation is proposed that relates the registration parameters with the distance between the model and data set. Secondly, the registration parameters are obtained by means of the Levengberg-Marquardt algorithm. Experimental results and comparisons with state of the art show the validity of the proposed framework.
|
|
|
Naveen Onkarappa, Sujay M. Veerabhadrappa and Angel Sappa. 2012. Optical Flow in Onboard Applications: A Study on the Relationship Between Accuracy and Scene Texture. 4th International Conference on Signal and Image Processing.257–267.
Abstract: Optical flow has got a major role in making advanced driver assistance systems (ADAS) a reality. ADAS applications are expected to perform efficiently in all kinds of environments, those are highly probable, that one can drive the vehicle in different kinds of roads, times and seasons. In this work, we study the relationship of optical flow with different roads, that is by analyzing optical flow accuracy on different road textures. Texture measures such as TeX , TeX and TeX are evaluated for this purpose. Further, the relation of regularization weight to the flow accuracy in the presence of different textures is also analyzed. Additionally, we present a framework to generate synthetic sequences of different textures in ADAS scenarios with ground-truth optical flow.
|
|
|
G.D. Evangelidis, Ferran Diego, Joan Serrat and Antonio Lopez. 2011. Slice Matching for Accurate Spatio-Temporal Alignment. In ICCV Workshop on Visual Surveillance.
Abstract: Video synchronization and alignment is a rather recent topic in computer vision. It usually deals with the problem of aligning sequences recorded simultaneously by static, jointly- or independently-moving cameras. In this paper, we investigate the more difficult problem of matching videos captured at different times from independently-moving cameras, whose trajectories are approximately coincident or parallel. To this end, we propose a novel method that pixel-wise aligns videos and allows thus to automatically highlight their differences. This primarily aims at visual surveillance but the method can be adopted as is by other related video applications, like object transfer (augmented reality) or high dynamic range video. We build upon a slice matching scheme to first synchronize the sequences, while we develop a spatio-temporal alignment scheme to spatially register corresponding frames and refine the temporal mapping. We investigate the performance of the proposed method on videos recorded from vehicles driven along different types of roads and compare with related previous works.
Keywords: video alignment
|
|
|
Gemma Roig, Xavier Boix, F. de la Torre, Joan Serrat and C. Vilella. 2011. Hierarchical CRF with product label spaces for parts-based Models. IEEE Conference on Automatic Face and Gesture Recognition.657–664.
Abstract: Non-rigid object detection is a challenging an open research problem in computer vision. It is a critical part in many applications such as image search, surveillance, human-computer interaction or image auto-annotation. Most successful approaches to non-rigid object detection make use of part-based models. In particular, Conditional Random Fields (CRF) have been successfully embedded into a discriminative parts-based model framework due to its effectiveness for learning and inference (usually based on a tree structure). However, CRF-based approaches do not incorporate global constraints and only model pairwise interactions. This is especially important when modeling object classes that may have complex parts interactions (e.g. facial features or body articulations), because neglecting them yields an oversimplified model with suboptimal performance. To overcome this limitation, this paper proposes a novel hierarchical CRF (HCRF). The main contribution is to build a hierarchy of part combinations by extending the label set to a hierarchy of product label spaces. In order to keep the inference computation tractable, we propose an effective method to reduce the new label set. We test our method on two applications: facial feature detection on the Multi-PIE database and human pose estimation on the Buffy dataset.
Keywords: Shape; Computational modeling; Principal component analysis; Random variables; Color; Upper bound; Facial features
|
|
|
David Geronimo, Frederic Lerasle and Antonio Lopez. 2012. State-driven particle filter for multi-person tracking. In J. Blanc-Talon et al., ed. 11th International Conference on Advanced Concepts for Intelligent Vision Systems. Heidelberg, Springer, 467–478.
Abstract: Multi-person tracking can be exploited in applications such as driver assistance, surveillance, multimedia and human-robot interaction. With the help of human detectors, particle filters offer a robust method able to filter noisy detections and provide temporal coherence. However, some traditional problems such as occlusions with other targets or the scene, temporal drifting or even the lost targets detection are rarely considered, making the systems performance decrease. Some authors propose to overcome these problems using heuristics not explained
and formalized in the papers, for instance by defining exceptions to the model updating depending on tracks overlapping. In this paper we propose to formalize these events by the use of a state-graph, defining the current state of the track (e.g., potential , tracked, occluded or lost) and the transitions between states in an explicit way. This approach has the advantage of linking track actions such as the online underlying models updating, which gives flexibility to the system. It provides an explicit representation to adapt the multiple parallel trackers depending on the context, i.e., each track can make use of a specific filtering strategy, dynamic model, number of particles, etc. depending on its state. We implement this technique in a single-camera multi-person tracker and test
it in public video sequences.
Keywords: human tracking
|
|