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ABSTRACT
Image based human detection is of paramount interest due
to its potential applications in fields such as advanced driv-
ing assistance, surveillance and media analysis. However,
even detecting non-occluded standing humans remains a chal-
lenge of intensive research. The most promising human
detectors rely on classifiers developed in the discriminative
paradigm, i.e., trained with labelled samples. However, la-
belling is a manual labor intensive step, especially in cases
like human detection where it is necessary to provide at least
bounding boxes framing the humans for training. To over-
come such problem, some authors have proposed the use of
a virtual world where the labels of the different objects are
obtained automatically. This means that the human mod-
els (classifiers) are learnt using the appearance of rendered
images,i.e., using realistic computer graphics. Later, these
models are used for human detection in images of the real
world. Indeed, the results of this technique are surprisingly
good. However, these are not always as good as the classi-
cal approach of training and testing with data coming from
the same camera, or pretty similar ones. Accordingly, in
this paper we address the challenge of using a virtual world
for gathering (while playing a videogame) a large amount of
automatically labelled samples (virtual humans and back-
ground) and then training a classifier that performs equal,
in real-world images, than the one obtained by training from
manually labelled real-world samples. For doing that, we
cast the problem as one of domain adaptation. Thus, we as-
sume that a small amount of manually labelled samples from
real-world images is required. To collect these labelled sam-
ples we propose a non-standard active learning technique.
Therefore, ultimately our human model is learnt by the com-
bination of virtual and real world labelled samples (Fig. 1),
something not done before. We present quantitative results
showing that this approach is valid.

Figure 1: Our proposal in a nutshell. By playing
a videogame we automatically gather labelled sam-
ples of virtual humans (pedestrians in a city) and
backgrounds (buildings, cars, trees, etc.). Following
the discriminative learning paradigm, we learn a hu-
man classifier from such virtual samples. Images of
the real world are used to challenge the classifier,
collecting all human detections. Then we start an
active learning procedure of batch type. For each
real-word image the query (Q) to be answered by
the human oracle is: (1) is it a human-free image?
(2) if the answer is no, then label (with bounding
box) non-detected humans. Finally, a new classifier is
learnt by using the labelled humans coming from vir-
tual and real world as examples of the human class,
and labelled backgrounds from both worlds are used
as examples of the non-human class. Thus, virtual
world is adapted to real world by active learning.



1. INTRODUCTION
Image based human detection is of paramount interest due
to its potential applications in fields such as advanced driv-
ing assistance, video surveillance and media analysis. How-
ever, by reading some recent surveys of the field [10, 13] we
see that even detecting non-occluded standing humans re-
mains challenging. This is not surprising due to the great
variety of backgrounds (scenarios, illumination) in which
humans are present, as well as their intra-class variabil-
ity (pose, clothe, occlusion). Nowadays, the most relevant
baseline human detector relies on a (holistic) human classi-
fier that uses the so-called histograms of oriented gradients
(HOG) as features, and the support vector machines (SVMs)
as learning method [7, 6]. New methods have been devel-
oped on top of this baseline in order to take into account
relative pose of human parts [12], to handle occlusions [20],
for taking advantage of color [19], etc.

One can deduce, from the state-of-the-art proposals in this
field, that the most promising human detectors rely on clas-
sifiers developed by following the discriminative paradigm,
i.e., trained with labelled samples. Being, HOG and SVM
key ingredients. However, labelling is a manual labor in-
tensive step, especially, in cases like human detection where
labelling objects (humans) means to provide at least bound-
ing boxes. Note that this is more costly for a human labeller
than just answering to yes/no-questions like is there any
human in this image? (i.e., without specifying where in the
affirmative cases). In addition, it is well accepted that hav-
ing sufficient variability in the labelled samples is decisive
to train classifiers able to generalize properly [4]. However,
traditional (passive) manual labelling do not evaluate the
degree of variability achieved by the labelled samples. A
common approach is assuming that the larger the set of la-
belled samples the higher the variability. However, just sub-
jectively adding more examples does not guarantee higher
variability, e.g., it can happen that we are just adding hu-
man samples too similar to the ones we already collected.
Accordingly, different authors have worked in the problem
of reducing the labelling burden.

In [5] a hierarchy of synthesized (non-realistic) pedestrian1

templates are used for pedestrian detection in far infrared
images, i.e., images capturing relative temperature. How-
ever, the authors admit poor performance and high compu-
tational cost.

In [9] a set of pedestrians is first manually segmented, and
then different types of transformations (jittering, mirror-
ing, shape deformations, texture variations, etc.) are ap-
plied to obtain joint pedestrian and background variabil-
ity. A classifier is then learned following the discriminative
paradigm. Local receptive fields with neural networks, and
so-called Haar filters with SVM are tested. Since the men-
tioned transformations encode a generative model, the over-
all approach is seen as a generative-discriminative learning
paradigm. The generative-discriminative cycle is iterated
several times in a way that new synthesized samples are
added in each iteration by following a probabilistic selective
sampling to avoid redundancy in the training set. The re-
ported results show that this procedure provides classifiers

1We use the term pedestrian to refer to a human as a traffic
participant.

of the same performance than when increasing the number
of training samples with new manually labelled ones. How-
ever, the authors show that much of the improvement comes
from enlarging the training set by applying jittering to the
pedestrian samples as well as by introducing more back-
ground ones. Note that jittering does not involve synthesiz-
ing pedestrians since it only requires shifting their framing
bounding box (assuming a little background frame around
the pedestrian), i.e., it is introduced to gain certain degree of
shift invariance in the learnt classifiers. Besides, for apply-
ing the different proposed transformations the overall pedes-
trian silhouette must be traced, which requires a manual la-
belling much more labor intensive than standard bounding
box framing of pedestrians.

In [1] a pure active learning technique is used. In particu-
lar, starting by 215 passively (arbitrary) labelled pedestri-
ans and sufficient background samples, it is constructed a
pedestrian classifier using an AdaBoost cascade, where the
weak rules are single-feature decision stumps, and the fea-
tures are referred as YEF (yet even faster). This classifier
is applied to unseen videos and detections are presented to
a human oracle that must report if they correspond to ac-
tual pedestrians or to background (false positives). In fact,
not all detections are presented to the oracle. First, there
are examined only image windows that intersect a prede-
fined horizon line. This reduces the application of the cur-
rent classifier to around 170,000 windows. Then, from these
windows, just those classified with a score falling into the
ambiguity region of the current classifier are passed to the
oracle. Once a full video is processed, the new collected
(labelled) samples together with the previous ones are used
to retrain a new classifier, i.e., the active learning follows a
batch scheme. The process is iterated with new videos until
a desired performance is achieved (determined by hold-out
validation in the labelled data, 2/3 for training and 1/3 for
testing).

Finally, in [14] it is proposed the use of a realistic videogame
in order to capture labelled samples of pedestrians and back-
ground by playing. More specifically, a driver moves a vir-
tual car equipped with a forward facing virtual camera along
the road of a virtual city, and all the pedestrians appearing
in the image are automatically extracted up to a precise
pixel-level segmentation (from which it is trivial to obtain
a bounding box). The pixels of the image not labelled as
pedestrian pixels are considered background. The challenge
then is to see if the appearance of the virtual pedestrians
and background is sufficiently realistic to lead to a pedes-
trian model that can be successful applied in real images.
For that, again, a discriminative paradigm is followed. In
particular, HOG features and linear SVM are used. The
presented results show that, when using HOG/linear-SVM,
the pedestrian classifier trained with only virtual data is to-
tally equivalent, in terms of performance, to its counterpart
trained using real images.

In this paper, we are not interested only in pedestrian detec-
tion as in [5, 9, 1, 14], but in detecting humans out of cities
as well. On the other hand, with these works we share the in-
terest of reducing manual labelling. In fact, collecting good
data at low cost for training appearance-based classifiers is
a new research area as reviewed in [3]. Roughly speaking,



Figure 2: Our framework for acquiring virtual im-
ages with pixel-level groundtruth of pedestrians.

we establish three levels of labelling from the point of view
of object detection: (1) LIL: image level (is there an ob-
ject inside this image? yes/no); (2) LBBL: bounding-box
level (e.g., framing objects inside the images with rectan-
gles); (3) LPL: pixel level (e.g., delineating the silhouette of
the objects present in the images). In [3] there are reviewed
several techniques to automatically collect labelled samples
from the internet using context (e.g., the captions of the
figures). This is not trivial and it is focused only on LIL,
which is useful for applications like image retrieval. How-
ever, for applications that require locating objects inside an
image only manual-based labelling of type LBBL and LPL
is reported (e.g., using the web-based Amazon’s Mechani-
cal Turk2). Note, that LBBL is far more costly than LIL,
and LPL much more expensive than LBBP. In fact, in order
to reduce such a tedious tasks, some approaches [18] try to
transform it in a web-based interactive game.

According to the exposition done so far, we bet for the ap-
proach proposed in [14]. There are several reasons for that,
which we summarize in the following. Videogames are reach-
ing very high degrees of realism, not only at the objects
level but even reproducing the characteristic spectral slope
of natural images [15]. Besides, videogame industry is one
of the most powerful worldwide, so players are a legion. In
addition, the near future will be internet-based playing of re-
alistic videogames, thus, there would exist the possibility of
collecting labelled data from many virtual scenes in central-
ized special sites (game servers). In fact, the own computers
could play the games, so that human players would not be
really needed. Note, that videogames have generative mod-
els behind (scene formation, character design, physic laws,
artificial intelligence, etc.). Thus, precise contextual infor-
mation can be obtained, not only noisy context like when
using the internet for collecting the data [3].

Currently, like in [14], we have a software that can obtain a
continuous labelling of pedestrian pixels by driving through
a virtual city (Fig. 2), i.e., groundtruth of type LPL, the
most difficult to collect manually. This is done frame by
frame, thus not only appearance-based features can be used,
but also temporal features as well as temporal processes
(e.g., tracking as in [16]). Note, that such temporal informa-
tion can not be obtained by approaches like [5, 9, 1] because
it is totally prohibitive in practice. In the future we will
use more than one virtual camera, so that even stereo data
acquisition can be simulated (similar to [17]).

2www.mturk.com

10
−1

10
0

10
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
is

s
ra

te

Daimler vs Daimler (14.6%)

Virtual vs Daimler (14.7%)

INRIA vs INRIA (22.8%)

Daimler vs INRIA (25.7%)

Virtual vs INRIA (27.5%)

Virtual Active vs INRIA (20.4%)

Figure 3: Per-image evaluation of different pedes-
trian detectors. The notation DB1 vs DB2, means
that the corresponding classifier was learnt using
DB1 training data, and evaluated in DB2 testing
data. Daimler refers to the data sets used in [10,
14] for pedestrian detection (videos taken from a car
inside a city). INRIA refers to a widely used data
set for human detection first introduced in [7, 6] (it
contains photographic images). Virtual refers to the
data sets we have collected in our virtual city (with
automatic labelling of pedestrians). In all cases the
percentage inside the parenthesis indicates the mis-
srate for one false positive per image. Virtual active
refers to the approach in this paper (Fig. 1).

In order to address our problem of human detection, we fol-
lowed the approach in [14], i.e., we developed a pedestrian
detector as follows. We collected a data set of images ac-
quired at urban scenarios with labelled pedestrians. Then
we learnt a HOG/linear-SVM classifier with such virtual la-
belled samples. For building the whole pedestrian detector,
the pedestrian classifier must be completed with a previous
stage that selects windows to be classified from the image
(pyramidal windows search) and with a posterior stage that
eliminates redundant detections due to shift-invariance of
the classifier (non-maximum-suppression) [13]. For such pre-
and post-classifier stages we also followed the suggestions in
[14]. Finally, we tested the learnt pedestrian model in the
video sequences of Daimler A.G. [10] as done in [14]. The
obtained per-image3 performance can be seen in Fig. 3 com-
pared to the one obtained by learning the pedestrian clas-
sifier using manually labelled pedestrians of Daimler real-
world images. In both types of training, virtual and real, we
used the same amounts of samples. Basically, the conclusion

3In the so-called per-image evaluation it is usually plotted
the number of false positives (pedestrians) per image vs the
missrate (ratio of undetected pedestrians). The overlapping
measure between detections and groundtruth, required for
such evaluation, is the proposed in the PASCAL VOC chal-
lenge [11]. It is worth to mention that one false positive per
image is an interesting point of such performance curve for
pedestrian detection in the driving assistance context, since,
if such noise is not correlated from frame to frame, then it
could be easily removed by temporal coherence analysis.



Figure 4: Top: virtual pedestrians and city sce-
narios. Bottom: INRIA photographs with humans
and diversified scenarios as city, countryside, beach,
etc. Humans appear also in such scenarios. Do-
main adaptation by batch active learning (Fig. 1)
will bring together virtual samples and difficult real
ones to learn real-world human classifiers.

is the same than in [14], namely, both pedestrian models lead
to pedestrian detectors of analogous performance.

For the more general problem of human detection we fol-
lowed the same scheme than before. In this case our experi-
ments where based on the widespread INRIA dataset for hu-
man detection [7, 6]. The differences between Daimler and
INRIA datasets is that while the former is composed of video
sequences of urban scenarios, the latter is composed of pho-
tographic pictures of people in different environments (city,
countryside, beach, etc.). Besides, humans in INRIA were
captured with more resolution than pedestrians in Daimler.
Thus, using our virtual samples, we trained a new pedestrian
classifier for INRIA using a canonical pedestrian window of
higher resolution than for Daimler. Then, we applied the
corresponding pedestrian detector to the testing set of IN-
RIA dataset. Again, we compared the obtained results with
the counterpart human classifier learnt from the training
data of INRIA dataset, i.e., using images of the real world.
As can be appreciated in Fig. 3, the performance provided
by the virtual-based classifier is significatively worse than
the provided by the real-based one (the real-based one is
giving the performance reported in [7, 6]). The doubt here is
whether the difference comes from the virtual-vs-real train-
ing style, or just because human detection is different than
pedestrian detection in the sense that the former must deal
with more types of environments (not only cities) and with
more pose variability than the one of pedestrians (most can
be catalogued as side/frontal/rear-views while walking). In
other words, the doubt is if the HOG/linear-SVM scheme
fails to be robust to world changes or if we have a prob-
lem of domain adaptation [2], or both. In order to asses
this question, we also learnt a pedestrian classifier adapted
to INRIA resolution by using Daimler training data (up-
scaling the images was required). The results of applying
the corresponding detector in the INRIA training set are
plotted in Fig. 3 too. Note that they are analogous to those
obtained with the virtual-based pedestrian detector. It is
worth to mention that the number of pedestrians/humans
used for training was the same independently of the train-
ing data (virtual, INRIA and Daimler), and the same for
background examples (Fig. 4 shows samples from virtual
and INRIA datasets). Thus, we argue that, in fact, we are
facing a problem of domain adaptation.

Accordingly, in the context of virtual worlds we have the op-
tion of developing other environments out of cities in which

to capture virtual humans with corresponding labelling. How-
ever, if the HOG/linear-SVM scheme is not totally world in-
variant we still could have troubles to reach the performance
of classifiers based on real-world images for training. The
same can happen with other features, since HOG/linear-
SVM scheme still remains as a state-of-the-art baseline [8,
19]. Thus, in this paper we propose to face the domain
adaptation problem. Therefore, we assume that a small
amount of manual annotations from real-world images is
required. In particular, in order to transform virtual-world
learnt pedestrian classifiers into real-world human classifiers,
we explore an active learning scheme (summarized in Fig.
1) that brings together virtual-world automatically labelled
data and difficult-to-classify real-world data actively labelled
by a human oracle. As far as we know, such across-world
training has not been done before in the field of human de-
tection.

Comparing our approach to previously mentioned works we
observe the following. In [9] the major benefit came from
jittering, as we have mentioned, including jittering and mir-
roring is always easy (in fact, training done for obtaining
Fig. 3 already incorporate such operations). Besides, fur-
ther work using temporal features is not possible, while with
virtual data is. In addition, in [9] it is not tested the state-
of-the-art HOG/linear-SVM baseline. Moreover, [9] requires
LPL for a set of pedestrians in order to initialize the pro-
posed generative model, while virtual-world-based approach
does not require initial manual labelling. In [1] such baseline
is neither tested. Besides, neither the used video sequences
nor the code are publicly available. In addition, the pro-
posed active learning scheme can lead to a high number of
yes/no-questions. Moreover, some yes-answers can be given
for pedestrians just roughly aligned in the detected window
(extrem jitter) which can significantly drop further training
based on densely computed features as widespread HOG and
Haar, i.e., the most promising ones [8, 19]. As we will see,
our proposal does not suffer from that. We share with [1] the
use of a batch approach during active learning, for compu-
tation efficiency. However, as we will see, our selective sam-
pling scheme is different since in [1] the training and testing
domains are the same, i.e., images captured from the same
camera, which is not our case. Again, [1] requires LBBL
for a set of pedestrians in order to learnt the initial pedes-
trian classifier, while virtual-world-based approach does not
require initial manual labelling. With respect to [14], the ap-
proach we present here incorporates domain adaptation by
batch active learning in order to transform pedestrian detec-
tors in human detectors by jointly considering virtual-world
labelled data and a small amount of real-world manually la-
belled data. In fact, we will show how just by using the
25% of the labelled data of the INRIA training set, together
with the virtual training set, we achieve the same or better
performance than by using the whole INRIA training set
alone (Fig. 3). Additionally, note that in our proposal, the
input of the human users (those contributing in the process
of training classifiers) is of multimodal nature: player/driver
and oracle roles.

The rest of the paper is organized as follows. In Sect. 2 we
provide more details of our proposal. In Sect. 3 we draw our
experiments, discussing the corresponding results. Finally,
section Sect. 4 summarizes the main conclusion of our work.



2. FROM PEDESTRIAN TO HUMAN CLAS-
SIFIERS USING ACTIVE LEARNING

Let us start by introducing some notation and concepts. We
denote by Ds and Dt two domains from which we observe
samples. We refer to Ds as the source domain, while Dt

is the target domain. Our problem is that given a sample
xt ∈ Dt, we want to know if xt ∈ wt, using wt to denote
the samples in Dt with a particular property in which we
are interested in. We want to face this problem by learning
a classifier C able to answer if xt ∈ wt. To learn C we want
to follow a discriminative paradigm, i.e., learning from la-
belled samples. If xt ∈ Dt, its corresponding label `xt

equals
+1 if xt ∈ wt and −1 otherwise. It turns out that we have
very few labelled samples drawn from Dt as to learnt a reli-
able classifier. However, we have sufficient labelled samples
drawn from Ds. If the distributions of the samples in Ds

and Dt are uncorrelated, then we have nothing to do. How-
ever, if they have a sufficient correlation, then we are facing
a problem of domain adaptation [2]. More specifically, we
can use the large amount of labelled data from Ds and a low
amount of labelled data from Dt to learn a C with chances
of succeeding in the task of classifying unseen samples from
Dt. Roughly speaking, our Ds is the set of image windows
cropped from virtual images, and our Dt the set of image
windows cropped from the real-world images in which we
want to detect humans. A sample xt is just an image win-
dow, wt is the property of imaging a human (human class),
and C a human classifier.

Since we can collect in a cheap way as many examples as
we need from our virtual cities, the setting for Ds holds.
However, we assume that we start with no labelled samples
from Dt. As we have seen in Sect. 1 (Fig. 3), a pedestrian
classifier trained on virtual samples works pretty well when
applied to real-world video sequences of city driving. Then
we can assume that there is sufficient correlation between Ds

and Dt, at least to the eyes of the features and base learning
machine we use, i.e., as we have already mentioned in Sect.
1, HOG features and linear SVM. Of course, as we deduce
also from results in Fig. 3, Ds and Dt are not equal at all. In
our case, Dt is more general (i.e., human detection is more
general than pedestrian detection) because more types of
scenarios are faced (Ds is urban like).

Therefore, our problem reduces to obtain some labelled sam-
ples from Dt, in a cheap way. For that, our proposal consists
in following an active learning procedure using a human or-
acle to label difficult samples from Dt. Usually, the difficult
samples are defined as those falling in the ambiguity region
of the base classifier at hand. For instance, in the case of
a SVM this may correspond to the area inside the margins.
However, in these cases, Ds and Dt are, in fact, the same
distribution and the aim is to label as few samples as possi-
bles but being meaningful. Our case, however, is different.
Let us say that Cs has been learnt from Ds (using HOG and
linear SVM) and that xt ∈ Dt ∧ xt ∈ wt. If Cs(xt) is a neg-
ative value, large in magnitude, it turns out that from the
viewpoint of Ds, xt is far from being in wt, from imaging a
human in our case. In our domain adaptation proposal, we
do not consider such xt as an outlier. On the contrary, these
are the informative samples for adapting the domains, i.e.,
the samples that must label the human oracle.

Figure 5: Labelling tool. For each displayed image,
the human oracle (Fig. 1) does the following task:
(1) if there are not humans, it marks the image as
human-free; (2) if there are humans, some of them
have been detected by the previous classifier (green
bounding box), but others may not (not framed).
The undetected humans must be manually framed
by the human oracle (yellow bounding box).

Accordingly, given a collection of real-world images it is pro-
cessed using Cs to detect pedestrians. Detections are kept.
By detections we consider those image windows xt for which
Cs(xt) > th. For our SVM, |Cs(xt)| ≥ 1 means to be out of
the learnt margins. Then, it is started a working session in
which such images and detections are presented to the hu-
man oracle. The responsibility of the oracle is to say if a
given image contains no humans (yes/no-question) and to
label missed humans with a rectangular bounding box (Fig.
5). Once the whole sequence is processed by the oracle,
a new classifier is trained using the labelled samples that
where used to build Cs (virtual-world ones) as well as the
new collected difficult samples (real-world ones). This type
of active learning is termed as batch mode, because a set of
images is processed before re-training. The overall approach
is summarized in Fig. 1. We think that a noticeable fact
is to use virtual- and real-world samples to train a human
classifier, something not done before up to the best of our
knowledge. This kind of process can be iterated.

Some additional details are that: (1) each real-world sample
labelled by the oracle is mirrored to duplicate the number of
positives; (2) for each new positive we collect ten negative
ones (because everything not being a human is background)
from the images labelled as human-free, we call this 1 : 10
ratio and it is pretty common in human detection [7, 10,
14]. If our system must sample N negatives, it selects the
N closest to th (and larger) according to the classification
score. The initial Cs is learnt following such ratio as well.



3. EXPERIMENTAL RESULTS

Datasets. In this section we conduct a series of experi-
ments for assessing the goodness of the proposal sketched
in Sect. 2. However, instead of actually having a human
oracle working actively, we will use a dataset passively la-
belled beforehand by a human oracle. In this way we can
compare fully passive labelling with simulated active one.
In particular, as we pointed out in Sect. 1, we will use the
widespread INRIA dataset for human detection [7, 6]. This
dataset is divided in separated sets of null intersection for
training and testing, say Itrain and Itest, resp. The train-
ing set contains 2,416 positive samples consisting in image
windows (original plus vertical mirror, i.e., 1,208 manually
labelled samples), each one containing a human framed by
certain amount of background. We term this set of windows
as Itrain

+ . For collecting negative samples, i.e., image win-
dows that do not contain humans, there are 1,218 human-
free available images. We term this set of images as Ii,train

− .

Windows are randomly collected from I i,train

−
to fulfil a ra-

tio of ten negatives per one positive sample (1 : 10 ratio),
we term Itrain

− the collected negative windows. All positive
and negative windows are down-scaled to a canonical win-
dow size. After this, Itrain = Itrain

+ ∪ Itrain
− . The testing set

consists of: (1) Ii,test

−
: 453 human-free images; (2) Ii,test

+ :
288 images containing 563 labelled humans (ground truth).
Then, Itest = I i,test

−
∪ Ii,test

+ .

Passive learning. As we mentioned in Sect. 2 we use HOG
features and Linear SVM learning machine for training hu-
man/pedestrian classifiers, in both cases with the parame-
ters identified in [7, 6] as the best, applying also the mirror-
ing technique. Accordingly, we train the human classifier us-
ing Itrain and the pedestrian one using Vtrain = Vtrain

+ ∪Vtrain
− .

The cardinality of Itrain
+ and Itrain

− equals the one of Vtrain
+

and Vtrain
− , resp. During training, bootstrapping is used, i.e.,

appending the respective negative training sets with hard
negative samples and re-training. Hard negatives are col-
lected from the corresponding negative training images by
applying the initially learnt classifier. The process is iterated
until very few new negatives are incorporated. In practice,
these training sets saturate with a single step. Let us refer
by Cpas

I
to the passively learnt classifier based on Itrain, and

by Cpas

V
to the equivalent one based on Vtrain.

Active learning. Given Cpas

V
, we have conducted several

experiments following our proposal (Sect. 2), where Itrain is
used as real data set for performing the (simulated) active
learning. We denote by Cact

V to any classifier learnt by using
Vtrain and samples actively collected from Itrain.

Discussion. Experiments have been conducted to give dif-
ferent insights about our proposal (e.g., dependence of the
results on th, on the p : n ratio, etc.), always using Itest for
testing. Performance curves of Fig. 6 summarize the results
obtained in our experiments, and draw us to the following
observations:

• According to Fig. 6-(1), even introducing a 2% (th =

−2, 27 new manually labelled humans) of samples from
Itrain (ratio 1 : 10, i.e., one from Itrain

+ and ten from
Itrain
− ) provides a Cact

V of better performance than Cpas

V
.

Using th ≤ −1 (i.e., negative score out of the uncer-
tainty area of Cpas

V
) implies to improve performance

(the best is at the margin border (i.e., in th = −1),
which implies to consider the 20% of samples from
Itrain (manually labelling 246 new humans4).

• It is also worth to mention that we trained a classi-
fier using only the actively collected real-world samples
from Itrain (th = −1, 1 : 10 ratio). The performance
was quite poor (100% missrate at one FPPI), thus, de-
noting that such real samples are a complement of the
virtual ones, but they are not useful on their own.

• According to Fig. 6-(2,3), introducing either only pos-
itive or only negative samples from Itrain (i.e., from
Itrain
+ and Itrain

− , resp.) can improve a little the perfor-
mance of Cpas

V
, again if th ≤ −1, but still remaining far

from Cpas

I
.

• According to Fig. 6-(4), it seems that the ratio 1 : 10
for introducing actively obtained samples from Itrain

+

and Itrain
− , is a good compromise. The ratio 1 : 1

already offers significative performance improvements
with respect to Cpas

V
.

• According to Fig. 6-(1,5), it seems that by randomly
sampling Itrain in equivalent amounts to the considered
active selection of samples (i.e., for th ∈ {−2.0,−1.5,
− 1.0,−0.5, 0.0}), we obtain similar performance im-
provements. In fact, the active method is slightly bet-
ter. In this context, such a random sampling would
correspond to the human oracle labelling humans from
Itrain on his own. However, it is unclear if by doing so
the human oracle would actually provide random sam-
ples, it may be the case that he/she is biased to cases
that likes more. Thus, altogether led us to recommend
the active paradigm, after all, the labelling effort is the
same.

• Finally, Fig. 6-(6) simulates the case in which the hu-
man oracle only labels a certain percentage of the un-
detected humans. We see that even only labelling a
25% (61 new labelled humans) of the cases already
provides a Cact

V clearly better than Cpas

V
. Missing the

25% the the labelling suggested by the active proce-
dure is unnoticeable (185 humans would be labelled).

After this analysis there is still a remaining question: what
type of humans leaves active learning for manual labelling?.
To answer, we classified all the humans in Itrain according
to the scenario where they are. The defined scenarios are:
city, beach, countryside, indoor, and snow. There are, resp.,
916, 50, 138, 87, and 17 humans. Thus, 292 humans are
not from the city. Therefore, most of the humans are of the
type used for training Cpas

V
(i.e., pedestrians) but the 32%

are not. This suggests that Cpas

V
should not be very far away

from Cpas

I
in performance, as it happens, but it is also to

be expected Cpas

I
being better. Of course, we are assuming

4Experiments with the software of Fig. 5 reveal that man-
ually labelling 250 human bounding boxes is a matter of
around 25 minutes.
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Figure 6: In all cases the percentage inside the parenthesis corresponds to the missrate at one FPPI. All
the curves correspond to testing in Itest. In all cases labelled as ’Virtual’, the full Vtrain set is used during
training. The different ’Active’ curves correspond to different ways of complementing Vtrain by actively taking
examples from Itrain. Top, from left to right: (1) Results for different th, [N, P ] refers to the number of samples
(N) chosen from Itrain

+ given th, and P is the corresponding percentage. From Itrain

− we take 10N , i.e. 1 : 10
ratio. (2) Analogous to ’(1)’ but only considering the samples taken from Itrain

− . (3) Only considering the
samples from Itrain

+ . Bottom, from left to right: (4) Analogous to ’(1)’ but changing the ratio of positive vs
negative samples actively taken from Itrain

+ and Itrain

− , resp., running from 1 : 1 to 1 : 20. (5) Analogous to
’(1)’ but instead of using the th rule we just sample randomly Itrain

+ and Itrain

− , taking the same percentage of
samples than for the considered th in ’(1)’. (6) Results for th = −1.0 but rather than taken all the samples of
Itrain

+ fulfilling such threshold condition, we only take the percentage in brackets. Of course, we take also the
number of samples from Itrain

− that keeps the 1 : 10 ratio.

that the data distributions of Itrain and Itest are highly cor-
related as is to be expected too. We have checked that the
active learning procedure suggests to label the following dis-
tribution of humans, according to the same scenarios: 156,
14, 24, 46, and 6. These numbers correspond to the 17.03%,
28.00%, 17.39%, 52.87%, and 35.29% of each scenario, resp.
Note, that 90 humans to be labelled are not from the city
(30% of the ones to be labelled). This analysis confirms that
some pedestrians still where not well represente by the Cpas

V

model, however, most of the badly represented in percentage
correspond to indoor, snow, beach, countryside and, finally,
city. We think that these results reinforce our approach of
casting the performance gap between Cpas

I
and Cpas

V
as a do-

main adaptation problem, and that batch active learning
can be effective to address it.

As summary we include Fig. 7, which plots the per-image
performance of Cpas

I
, Cpas

V
and the best Cact

V (th = −1, ratio
1 : 10). Additionally, we include the performance of a clas-
sifier obtained by passively learning using all the examples
in Itrain and Vtrain. Note, that just mixing samples from
different worlds in a blind way just harms the performance
of both Cpas

I
and Cpas

V
.
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Figure 7: Final comparative results.



4. CONCLUSION
In this paper we have addressed a core problem in the field
of human detection, namely, the acquisition at low cost of
good samples to train. In order to collect most of the hu-
man and background samples we rely on players/drivers of
a videogame, i.e., we automatically collect labelled samples
while enjoying a game. With them we learn a virtual-world
based pedestrian classifier that must work as a human clas-
sifier in images depicting the real world. In city scenarios,
those where the pedestrian classifier is initially trained, the
exhibited performance is equivalent to the one obtained by a
counterpart real-world based classifier, i.e., requiring costly
manual labelling. However, in scenarios out of the city, both
types of classifiers can not reach the performance of a classi-
fier learnt using data manually labelled for training in such
new scenarios. In order to keep the advantage of the cost-
free labelling in virtual-worlds, we have cast the problem
of transforming the virtual-world based pedestrian classifier
into a human classifier for real world images of general sce-
narios, as a domain adaptation problem. To perform the
adaptation, we have proposed a batch active learning tech-
nique that, with just a few manually labelled humans from
the real images, is able to reach the same performance than a
human classifier entirely trained from a much large amount
of manually labelled data. Ultimately, or human classifier
has been trained by using samples from virtual and real
worlds, which is totally new in the field of appearance based
human detection up to the best of our knowledge. We ob-
serve that, in a way, we have adopted a multimodal approach
from two view points: (1) using two different types of raw
data (virtual and real), and (2) collecting the data by play-
ing in the one hand and by working on the other. Finally,
we would like to mention that our proposal can be extended
in the future in several ways, e.g., detecting other targets
and incorporating spatio-temporal features, just to mention
a few. Using incremental learning machines, e.g. incremen-
tal SVM, will be also assessed with the aim of eliminating
the batch mode from the active learning to see if the manual
labelling can be even more reduced.
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Learning appearance in virtual scenarios for pedestrian
detection. In IEEE Conf. on Computer Vision and
Pattern Recognition, San Francisco, CA, USA, 2010.

[15] T. Pouli, D. Cunningham, and E. Reinhard. Image
statistics and their applications in computer graphics.
In European Computer Graphics Conference and
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