Cool world: domain adaptation of virtual and real
worlds for human detection using active learning
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1 Introduction

Image based human detection is of great interest due to its potential applications. However, even
detecting non-occluded standing humans remains challenging [4]. This is not surprising due to the
large variety of backgrounds (scenarios, illumination) in which humans are present, as well as their
intra-class variability (pose, clothe, occlusion). Nowadays, the most relevant baseline human de-
tector relies on a holistic human classifier that uses the so-called histograms of oriented gradients
(HOQG) as features, and the linear support vector machines (Lin-SVM) as learning method [2]. New
methods have been developed on top of this baseline, most of them following a discriminative learn-
ing paradigm. This means that human classifiers are trained from labelled samples. Labelling is
performed by a human oracle. On the one hand, the oracle must select human-free images from
which negative samples can be taken, i.e., background windows. On the other hand, the oracle must
draw a bounding box (BB) per each human sample of interest within non-human-free images, i.e.,
positive samples are image windows framing humans. In practice, this implies that a core issue as
having good samples to train, relies on a subjective and tiresome manual task.

In order to automatize and control the labelling process, we proposed the use of a realistic videogame
in [5], i.e., to capture labelled samples of pedestrians' and background by playing. More specifically,
a driver moves a virtual car equipped with a forward facing virtual camera along the road of a
virtual city, and all the pedestrians appearing in the image are automatically labelled. The pixels
of the image not labelled as pedestrian pixels are considered background. The challenge then is to
see if the appearance of the virtual pedestrians and background is sufficiently realistic to lead to a
pedestrian model that can be successfully applied in real images. For that, we used the HOG/Lin-
SVM baseline and Daimler real-world images [3]. The presented results show that the pedestrian
classifier trained with only virtual-world samples is totally equivalent, in terms of per-image average
miss rate® performance, to its counterpart trained using real-world ones. This is illustrated in Fig. 1,
where Daimler vs Daimler (i.e., training and testing sets are from Daimler real-world images) shows
similar performance to Virtual vs Daimler (i.e., training is based on our virtual-world images while
testing is done with Daimler real-world ones). We use the same number of pedestrian samples for
training, irrespective of coming only from real world or just from virtual world.

Afterwards, we were not only interested in pedestrian detection, but in detecting humans out of out-
door city scenarios as well. Then, we followed the same approach. However, in this case we based
our experiments on the widespread INRIA dataset for human detection [2]. A major difference be-

"Hereinafter we use the term pedestrian to refer to a human as a traffic participant of an urban area.

2Per-image refers to curves of false positives (pedestrians) per image vs miss rate (ratio of undetected
pedestrians). In pedestrian detection the FPPI range [1()’17 100} is of especial interest since a further temporal
coherence analysis can reduce the FPPI. Thus, we compute the average miss rate for such a range.
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Figure 1: Top-Left: our framework for acquiring virtual images with pixel-level labelling of pedes-
trians. Bottom-Left: pedestrians and city background samples from virtual world; and real-world
INRIA samples with humans within diversified scenarios as city, countryside, and beach. Right:
per-image performance curves (average miss rate in parenthesis). The notation DB/ vs DB2, means
that the corresponding classifier was learnt using DB/ training data, and evaluated in DB2 testing
data. Daimler refers to the data sets used in [3] for pedestrian detection (videos taken from a car
inside a city). INRIA refers to a widely used data set for human detection first introduced in [2] (it
contains photos of people and places). Virtual refers to the data sets we have collected in our virtual
city (with automatic labelling of pedestrians). Virtual Active refers to the approach in Fig. 2.

tween Daimler and INRIA datasets is that while the former is composed of video sequences of urban
scenarios, the latter is composed of photos of people in different environments (city, countryside,
beach, etc.). Figure 1 shows comparative results between the cases INRIA vs INRIA (INRIA training
and testing sets) and Virtual vs INRIA (virtual-world training, INRIA testing). Training with virtual
data is significatively worse now (7.28 points of average miss rate). The question is if the differ-
ence comes from the virtual-vs-real training-testing style, or if it is because human and pedestrian
detection are different in the sense that the former deals with more environments (not only cities)
and poses than the latter (pedestrian poses are just side/frontal/rear-views while walking). In other
words, if the HOG/linear-SVM scheme fails to be robust to world changes or if we have a problem
of domain adaptation [1], or both. In order to assess this issue, we also learnt a pedestrian classifier
using Daimler training data and the corresponding detector was tested in INRIA. Figure 1 shows that
such Daimler vs INRIA experiment has the same problem than the Virtual vs INRIA one since it is
6.82 points below INRIA vs INRIA, i.e., performances of Daimler vs INRIA and Virtual vs INRIA are
similar (such 0.46 points of difference are not significative in pedestrian detection). Thus, we argue
that, in fact, we are facing a problem of domain adaptation. We recently addressed this problem in
[6]. Here we summarize such work, but using average miss rate metric to evaluate the performance.

2 Domain adaptation based on active learning and cool world

Let D, and Dy be two different domains from which we observe samples. Where D; is the source
domain and Dy is the target domain. Our problem is that given a sample x; € D;, we want to know
if x; € wy, using w, to denote the samples in D, with a particular property in which we are interested
in. We want to face this problem by learning a classifier C able to answer if z; € w;. To learn C
we want to follow a discriminative paradigm, i.e., learning from labelled samples. If x; € Dy, its
corresponding label ¢, equals +1 if ; € w; and —1 otherwise. It turns out that we have very few
labelled samples drawn from D; as to learn a reliable classifier. However, we have sufficient labelled
samples drawn from D;. If the distributions of the samples in D and D; are uncorrelated, then we
have nothing to do. However, if they have a sufficient correlation, then we are facing a problem
of supervised domain adaptation [1]. More specifically, we can use the large amount of labelled
data from D, and a low amount of labelled data from D; to learn a C with chances of succeeding
in the task of classifying unseen samples from D;. Roughly speaking, our D; is the set of image
windows cropped from virtual-world images, and our D; the set of image windows cropped from
the real-world images in which we want to detect humans. A sample z; is just an image window, w;
is the property of imaging a human (human class), and C a human classifier.
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Figure 2: By playing a videogame we gather labelled samples of virtual humans and backgrounds,
which are used to learn a human classifier. This classifier is applied to real-world images. In partic-
ular, for each real-word image, we ask a human oracle if it is a human-free one; if not, non-detected
humans are labelled by him/her (right: green boxes are detections, yellow one is a miss detection
being labelled). After, we create the cool world by combining the virtual-world samples and the ac-
tively collected real-world ones. Finally, a new classifier is learnt in such cool world. Thus, virtual
world is adapted to real world by active learning, highly reducing the human-based labelling effort.

In order to perform the supervised domain adaptation, we follow an active learning procedure using
a human oracle that labels difficult samples of D,. Usually, the difficult samples are defined as those
falling in the ambiguity region of the base classifier at hand. For instance, in the case of a SVM
this may correspond to the area inside the margins. However, in these cases, Dy and D; follow the
same distribution and the aim is to label as few samples as possibles but being meaningful. Our
case, however, is different. Let us say that Cs has been learnt from D, (with HOG/Lin-SVM) and
that z; € Dy A x4 € wy. If C4(a4) is a negative value out of the ambiguity region, it turns out that
from the viewpoint of Dy, x; is far from being in wy, i.e., from imaging a human in our case. In our
domain adaptation proposal, we do not consider such x; as an outlier. On the contrary, these are the
informative samples for adapting the domains, i.e., the samples that must label the human oracle.

Accordingly, given a collection of real-world images it is processed using C, to detect humans.
Detections are kept. By detections we consider those image windows x; for which C,(x) > th. For
our SVM, |Cs(z+)| > 1 means to be out of the learnt margins. Then, a working session is started in
which such images and detections are presented to the human oracle. The responsibility of the oracle
is to say if a given image contains no humans (Y/N-Question) and to label missed humans (BB-
Question). From Y/N-Questions we can collect false positives (i.e., background windows classified
as containing a human), while from BB-Questions we collect false negatives (i.e., non detected
humans). Using these difficult real-world samples and the original virtual-word ones we can build
what we term HOG-based cool world®, i.e., to learn a new (domain adapted) classifier, we combine
the virtual- and real-world samples without origin distinction. Since a set of images is processed
before re-training, this is a type of batch mode active learning. The overall approach is summarized
in Fig. 2. This process can be iterated in order to incrementally obtain better classifiers.

Results in Sect. 1 lead us to focus the domain adaptation challenge on D; = INRIA. We have seen
that INRIA vs INRIA performs 7.28 points of average miss rate better than Virtual vs INRIA. This
can be expected since D; includes more scenarios and human poses than Ds. However, Virtual vs
INRIA still gives only a 35.98% of miss rate. Thus, Ds and D; are somehow correlated for the
HOG/Lin-SVM setting. Hence, the proposed supervised domain adaptation procedure is worth to
be applied. For doing so, instead of actually having a human oracle working actively, we will use
the INRIA training set passively labelled beforehand by a human oracle. In this way we can com-

3We use the cool world term as a tribute to the 1992 movie with that title. In this movie, there is a real world
and a cool world, the latter shared by real humans and cartoons.



pare fully passive labelling with simulated active one. By setting th to 1, we roughly bound the
number of actively collected humans to the 20% of the total number (all the collected passively,
which includes the simulated active ones). Actively collected background samples follow the same
proportion (before bootstrapping). The resulting performance is shown in Fig. 1 as Virtual Active
vs INRIA, which is similar to INRIA vs INRIA (the former 0.81 points better than the latter), thus,
achieving domain adaptation. It is worth to mention that /NRIA vs INRIA requires the labelling of
1,208 real-world humans, while Virtual Active vs INRIA only 246 (1,208 virtual-world pedestrians
+ 246 real-world humans are used in this case for training). We checked that active labelling intro-
duces humans from city, countryside, beach, snow, and indoor scenarios. In particular, the 17.03%,
17.39%, 28.00%, 35.29%, and 52.87%, resp., of those available per scenario. Thus, confirming that
real-world humans out of outdoor city scenarios are complementing the virtual-world pedestrians
within cool world. Fig. 1 shows as Virtual+INRIA vs INRIA the case of using all available virtual-
world pedestrians and INRIA humans (i.e., 2,416 labelled positives) to train. Note, that the result
is worse than Virtual Active vs INRIA (3.7 points) and than INRIA vs INRIA (2.89 points). Which
means that just blindly adding more real-world samples does not guarantee a better performance. Of
course, a sort of domain adaptation holds since it improves 4.39 points regarding Virtual vs INRIA,
but in this setting it has no sense to use the virtual world since all real-world samples are available.

3 Conclusion

We have addressed a core problem in the field of human detection, namely, the acquisition at low
cost of good samples to train. We have build a cool world composed of automatically labelled
virtual-world samples and a few actively collected real-world ones. Within such cool world we have
learnt a human classifier that shows the same performance that its counterpart totally trained with
real world images from the same domain than the testing images. Thus, through our cool world
we have obtained a domain adapted classifier based on a relatively low human labelling effort.
We consider our current framework for training human detectors as a proof of concept that can be
further enhanced by new domain adaptation techniques, always looking for the best performance
while minimizing the number of manual labelling.
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