|
David Geronimo, Frederic Lerasle and Antonio Lopez. 2012. State-driven particle filter for multi-person tracking. In J. Blanc-Talon et al., ed. 11th International Conference on Advanced Concepts for Intelligent Vision Systems. Heidelberg, Springer, 467–478.
Abstract: Multi-person tracking can be exploited in applications such as driver assistance, surveillance, multimedia and human-robot interaction. With the help of human detectors, particle filters offer a robust method able to filter noisy detections and provide temporal coherence. However, some traditional problems such as occlusions with other targets or the scene, temporal drifting or even the lost targets detection are rarely considered, making the systems performance decrease. Some authors propose to overcome these problems using heuristics not explained
and formalized in the papers, for instance by defining exceptions to the model updating depending on tracks overlapping. In this paper we propose to formalize these events by the use of a state-graph, defining the current state of the track (e.g., potential , tracked, occluded or lost) and the transitions between states in an explicit way. This approach has the advantage of linking track actions such as the online underlying models updating, which gives flexibility to the system. It provides an explicit representation to adapt the multiple parallel trackers depending on the context, i.e., each track can make use of a specific filtering strategy, dynamic model, number of particles, etc. depending on its state. We implement this technique in a single-camera multi-person tracker and test
it in public video sequences.
Keywords: human tracking
|
|
|
Daniel Hernandez, Antonio Espinosa, David Vazquez, Antonio Lopez and Juan Carlos Moure. 2017. Embedded Real-time Stixel Computation. GPU Technology Conference.
Keywords: GPU; CUDA; Stixels; Autonomous Driving
|
|
|
Jiaolong Xu, Sebastian Ramos, Xu Hu, David Vazquez and Antonio Lopez. 2013. Multi-task Bilinear Classifiers for Visual Domain Adaptation. Advances in Neural Information Processing Systems Workshop.
Abstract: We propose a method that aims to lessen the significant accuracy degradation
that a discriminative classifier can suffer when it is trained in a specific domain (source domain) and applied in a different one (target domain). The principal reason for this degradation is the discrepancies in the distribution of the features that feed the classifier in different domains. Therefore, we propose a domain adaptation method that maps the features from the different domains into a common subspace and learns a discriminative domain-invariant classifier within it. Our algorithm combines bilinear classifiers and multi-task learning for domain adaptation.
The bilinear classifier encodes the feature transformation and classification
parameters by a matrix decomposition. In this way, specific feature transformations for multiple domains and a shared classifier are jointly learned in a multi-task learning framework. Focusing on domain adaptation for visual object detection, we apply this method to the state-of-the-art deformable part-based model for cross domain pedestrian detection. Experimental results show that our method significantly avoids the domain drift and improves the accuracy when compared to several baselines.
Keywords: Domain Adaptation; Pedestrian Detection; ADAS
|
|
|
Jiaolong Xu, Sebastian Ramos, David Vazquez and Antonio Lopez. 2014. Cost-sensitive Structured SVM for Multi-category Domain Adaptation. 22nd International Conference on Pattern Recognition. IEEE, 3886–3891.
Abstract: Domain adaptation addresses the problem of accuracy drop that a classifier may suffer when the training data (source domain) and the testing data (target domain) are drawn from different distributions. In this work, we focus on domain adaptation for structured SVM (SSVM). We propose a cost-sensitive domain adaptation method for SSVM, namely COSS-SSVM. In particular, during the re-training of an adapted classifier based on target and source data, the idea that we explore consists in introducing a non-zero cost even for correctly classified source domain samples. Eventually, we aim to learn a more targetoriented classifier by not rewarding (zero loss) properly classified source-domain training samples. We assess the effectiveness of COSS-SSVM on multi-category object recognition.
Keywords: Domain Adaptation; Pedestrian Detection
|
|
|
Jiaolong Xu, Sebastian Ramos, David Vazquez and Antonio Lopez. 2013. DA-DPM Pedestrian Detection. ICCV Workshop on Reconstruction meets Recognition.
Keywords: Domain Adaptation; Pedestrian Detection
|
|
|
Jiaolong Xu, David Vazquez, Krystian Mikolajczyk and Antonio Lopez. 2016. Hierarchical online domain adaptation of deformable part-based models. IEEE International Conference on Robotics and Automation.5536–5541.
Abstract: We propose an online domain adaptation method for the deformable part-based model (DPM). The online domain adaptation is based on a two-level hierarchical adaptation tree, which consists of instance detectors in the leaf nodes and a category detector at the root node. Moreover, combined with a multiple object tracking procedure (MOT), our proposal neither requires target-domain annotated data nor revisiting the source-domain data for performing the source-to-target domain adaptation of the DPM. From a practical point of view this means that, given a source-domain DPM and new video for training on a new domain without object annotations, our procedure outputs a new DPM adapted to the domain represented by the video. As proof-of-concept we apply our proposal to the challenging task of pedestrian detection. In this case, each instance detector is an exemplar classifier trained online with only one pedestrian per frame. The pedestrian instances are collected by MOT and the hierarchical model is constructed dynamically according to the pedestrian trajectories. Our experimental results show that the adapted detector achieves the accuracy of recent supervised domain adaptation methods (i.e., requiring manually annotated targetdomain data), and improves the source detector more than 10 percentage points.
Keywords: Domain Adaptation; Pedestrian Detection
|
|
|
Yainuvis Socarras, Sebastian Ramos, David Vazquez, Antonio Lopez and Theo Gevers. 2013. Adapting Pedestrian Detection from Synthetic to Far Infrared Images. ICCV Workshop on Visual Domain Adaptation and Dataset Bias. Sydney, Australy.
Abstract: We present different techniques to adapt a pedestrian classifier trained with synthetic images and the corresponding automatically generated annotations to operate with far infrared (FIR) images. The information contained in this kind of images allow us to develop a robust pedestrian detector invariant to extreme illumination changes.
Keywords: Domain Adaptation; Far Infrared; Pedestrian Detection
|
|
|
German Ros, Laura Sellart, Joanna Materzynska, David Vazquez and Antonio Lopez. 2016. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. 29th IEEE Conference on Computer Vision and Pattern Recognition.3234–3243.
Abstract: Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task
Keywords: Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation
|
|
|
Ishaan Gulrajani and 6 others. 2017. PixelVAE: A Latent Variable Model for Natural Images. 5th International Conference on Learning Representations.
Abstract: Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representation and generate samples that preserve global structure but tend to suffer from image blurriness. PixelCNNs model sharp contours and details very well, but lack an explicit latent representation and have difficulty modeling large-scale structure in a computationally efficient way. In this paper, we present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. The resulting architecture achieves state-of-the-art log-likelihood on binarized MNIST. We extend PixelVAE to a hierarchy of multiple latent variables at different scales; this hierarchical model achieves competitive likelihood on 64x64 ImageNet and generates high-quality samples on LSUN bedrooms.
Keywords: Deep Learning; Unsupervised Learning
|
|
|
David Vazquez and 7 others. 2017. A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery.
Abstract: Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.
Keywords: Deep Learning; Medical Imaging
|
|