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Abstract— We propose an online domain adaptation method
for the deformable part-based model (DPM). The online domain
adaptation is based on a two-level hierarchical adaptation tree,
which consists of instance detectors in the leaf nodes and a
category detector at the root node. Moreover, combined with
a multiple object tracking procedure (MOT), our proposal
neither requires target-domain annotated data nor revisiting
the source-domain data for performing the source-to-target
domain adaptation of the DPM. From a practical point of
view this means that, given a source-domain DPM and new
video for training on a new domain without object annotations,
our procedure outputs a new DPM adapted to the domain
represented by the video. As proof-of-concept we apply our
proposal to the challenging task of pedestrian detection. In this
case, each instance detector is an exemplar classifier trained
online with only one pedestrian per frame. The pedestrian
instances are collected by MOT and the hierarchical model
is constructed dynamically according to the pedestrian tra-
jectories. Our experimental results show that the adapted
detector achieves the accuracy of recent supervised domain
adaptation methods (i.e., requiring manually annotated target-
domain data), and improves the source detector more than 10
percentage points.

I. INTRODUCTION

Classifiers play a core role in many computer vision
tasks. Training an accurate classifier usually requires a large
amount of labeled training data. Collecting a training set is
not a cost-free process since the required images must be
acquired and the positive/negative samples labeled. In most
of the cases, the labeling is a tiresome manual operation
prone to errors. Moreover, in many real applications im-
age acquisition involves the deployment of equipment and
personnel for days or months. However, a possible scenario
is that the deployment environment (testing domain) does
not follow the same probability distribution as the training
domain (i.e. the dataset bias [1]), or the testing data may
be collected dynamically and its distribution can vary over
time. For example, an on-board pedestrian detection system
may face large variety of scenarios during the driving, e.g.,
different cities, different weathers, different seasons, etc. All
these can cause a significant drop in the accuracy of the
learned classifiers.

One may consider updating the classifiers by adding
training data for the new target domain. However, required
data collection may be not practical and limits the range
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of possible applications. Accordingly, reusing the existing
classifiers by adapting them from one training environment
(source domain) to the new testing one (target domain) is
an approach increasingly exploited in the computer vision
community [2], [3], [4], [5], [6], [7]. In this work, we focus
on the domain adaptation of DPM-based object detectors
due to the high performance usually exhibited by such rich
object representations.

Domain adaptation of DPMs has been explored in [8],
which demonstrates that a DPM detector trained with syn-
thetic data can be adapted to various real-world datasets
with a relatively few labeled real-world (target domain) data.
However, the proposed domain adaptation methods have
several limitations. First, they require manual annotation in
the target domain (i.e., supervised domain adaptation); Sec-
ond, all newly annotated training data needs to be available
for the adaptation, i.e. following a typical batch learning
mode. To address these problems, in this work, we explore
an online domain adaptation technique for the DPM-based
object detectors. In particular, given an unlabeled training
video of a new domain, our method automatically adapts the
current DPM without human intervention (i.e., unsupervised
domain adaptation) and without the data used to learn it.
This can be a continuous process as new videos arrive.

The main benefit of an unsupervised online domain adap-
tation is to improve existing source-oriented detectors as
soon as a new unlabeled target-domain training data is
available, and keep improving as more of such data arrives
in a continuous fashion. We build on the recent proposal
of hierarchical adaptive structured SVM (HA-SSVM) [9],
originally defined as a batch-mode supervised domain adap-
tation procedure. Our online domain adaptation is based on
a two-level hierarchical adaptation tree, which consists of
instance detectors in the leaf nodes and a category detector
at the root node. Each instance detector is an exemplar
classifier which is trained online with only one object per
frame. The object instances are collected by multiple object
tracking (MOT) and the hierarchical model is constructed
dynamically according to the object trajectories. As proof-
of-concept we apply our proposal to the challenging task of
pedestrian detection. Fig. 1 illustrates the main idea.

The rest of the paper is organized as follows. In Section II,
we review the related work on domain adaptation. Section
III elaborates the proposed method. We first introduce the
overview of the online domain adaptation framework. Then
we go to the details of each step, including the MOT
process and the learning algorithm. Section IV shows the
experimental results on ETH datasets. Finally, Section V
draws the main conclusions.



Fig. 1. Our hierarchical unsupervised online domain adaptation framework for DPMs.

II. RELATED WORK

Our work is related to domain adaptation, which is an
emergent topic in computer vision in recent years. Most of
the work focus on object recognition [2], [10] and recently
on object detection [3], [7], [8]. The domain adaptation
methods in computer vision can be categorized into two main
groups, i.e. model-transform-based and feature-transform-
based. Other methods also consider a joint learning of mode
transformation and feature transformation, e.g., [10], [11].

We refer to [12] for a comprehensive review of domain
adaptation techniques. We mainly review recent proposals in
the context of object detection. In [8], the adaptive SVM (A-
SVM) is extended to structured SVM (A-SSVM) for training
domain adaptive DPM. The A-SSVM is further developed
in [9] to build a hierarchical model for progressive domain
adaptation. Other works also proposed domain adaptation for
general object detection, e.g., [13], [14]. In this work, we
extend the hierarchical domain adaptation framework of [9]
and tackle the more challenging unsupervised online setting.

Due to the challenging setting, online domain adaptation
is a relatively little explored scenario. The online transfer
learning (OTL) framework [15], which is based on ensemble
learning, has been proven a successful method. It learns a
classifier online with data from the target domain, and com-
bines it with the source domain classifier. The combination
weights are adjusted dynamically according to the loss of the
two classifiers on the target domain samples. The later work
of [4] extended OTL and addressed the problem of multiple
category object recognition. Also inspired by OLT, recently,
an incremental domain adaptation method for DPM was
proposed in [16]. The incremental domain adaptation method
is based on multiple instance learning (MIL), which shares
some properties of online MIL, e.g. object tracking [17],
[18], [19]. Although [16] can also perform domain adaptation
with incrementally collected testing data, it requires labeled
target domain data. Even at the semi-supervised setting, a
human oracle is required to click out false positives. A recent
work of [20] proposed a method for classifier adaptation at
prediction time, which is orthogonal to ours. They target

distribution changes due to changing class proportions while
our aim at adapting to changes in appearance of the classes
themselves.

Similar to our hierarchical model, a recent work of [21]
proposed a category-to-instance detector for improving track-
ing. Target objects are identified with a pre-trained category
detector and object identity across frames is established by
individual-specific detectors. The individual detectors are re-
trained online from a single positive example whenever there
is a coincident category detection. The method is built on
a boosting classifier framework while our method directly
models the category-to-instance adaptation in a unified HA-
SSVM optimization framework. The final goal of [21] is
online tracking, while ours is to obtain a generic target
domain adapted detector.

III. HIERARCHICAL ONLINE DOMAIN ADAPTATION
(HOLDA)

We first introduce the overall framework of the hierarchi-
cal model. Then we elaborate how to incorporate multiple
object tracking into the pipeline for generating trajectories.
Later, we formulate the learning as hierarchical adaptive
SSVM and finally, we detail the algorithm.

A. Model

The hierarchical online adaptation framework is shown
in Fig. 1. Given a target domain sequence, we first apply
the source domain detector to collect the detected bounding
boxes (red boxes). Then, MOT is used to generate trajectories
and also remove some false positives. After generating the
trajectories, our hierarchical model can be learned frame
by frame using online adaptive SSVM. At each frame, the
hierarchical model consists of instance detectors at the leaf
nodes (red balls in Fig. 1) and a category detector at the
second layer (the orange ball). The adaptation is executed
in a progressive manner, i.e., category detector (orange ball
at time t), is adapted from the previously adapted category
detector (blue ball at time t, adapted from orange ball at
time t − 1). At t = 0, the category detector is initialized
by the source domain detector. The instance detectors are



adapted concurrently with the category detector of the current
frame. The hierarchical model is constructed dynamically
according to the trajectories at current frame, i.e., each
instance detector corresponds to one trajectory. Each in-
stance detector is essentially an exemplar classifier which is
trained using only one positive example (red bounding box)
and many negative examples (green bounding boxes). The
negative examples are collected from the same frame, but
outside the non-negative area. The non-negative region (blue
dash rectangle) is defined using prior geometry knowledge,
which can avoid accidentally introducing false negatives as
background examples.

B. Generating trajectories by MOT

We use MOT to provide trajectory information for the
hierarchical online learning. The MOT requires bounding
boxes from the source domain detector as input and outputs
the optimized trajectories which may recover some missing
detections and eliminate false detections from the source
detections. Besides the selected detections, the trajectories
are directly used to build the hierarchical online model, i.e.,
each trajectory corresponds to a leaf node in the adaptation
tree.

In this work, we implemented a simple motion-based
multiple object tracking algorithm based on Kalman filter.
Though more sophisticated state-of-the-art MOT algorithms
can be readily incorporated in our system, e.g. [22], we found
our simple MOT has already given promising results. Our
MOT method can be divided into three parts: (1) detecting
pedestrians at each frame (this is provided by the source
detector), (2) associating the detections corresponding to the
same pedestrian over time, (3) evaluating each trajectory to
identify the reliable ones. The method is summarized in Alg.
1. The reliability of a trajectory is estimated according to the
length and the confidence. The length of a trajectory is is
defined as the number of frames being active. The confidence
of a trajectory is measured by averaging the detection scores
of the associated bounding boxes. If the length or confidence
is lower than a predefined threshold, the trajectory is defined
as not reliable, otherwise as reliable.

C. Learning with HA-SSVM

We first review the training of DPM and then introduce the
formulation of HA-SSVM proposed in [9]. Later, we elabo-
rate how to extend HA-SSVM to online domain adaptation.
We denote our method by HOLDA.

As in [24], we formulate the learning of DPM as a latent
structured SVM. Suppose we are given a set of training
samples (x1, y1,h1), . . . , (xN , yN ,hN ) ∈ X ×Y×H, where
X is the input space, Y = {+1,−1} is the label space, and
H is the hypothesis or output space, i.e., the configuration
of object parts. We denote the features as joint feature
vectors Φ(x,h). In the DPM case [25], h is not given
and is therefore treated as a latent variable during training.
DPM training aims to learn an optimum w which encodes
the appearance parameters and deformation coefficients. The

Algorithm 1 Motion-based Multiple Object Tracking
Input: N : length of the sequence
Ds = {ds(t)|t ∈ [1, N ]}: set of bounding boxes detected
by the source domain, where ds(t) are bounding boxes at
frame t.
Output: T ∗(t):set of reliable tracks centred at frame t
0: Initialize the tracks T ∗(1) by ds(1).
1: for t=2, ..., N, do
2: Detect ds(t).
3: Predict new locations of active tracks in T ∗(t− 1) by

Kalman filter.
4: Data association: assign detections ds(t) to the active

tracks in T ∗(t− 1) using [23].
5: Update tracks:

5.1: Correct the location estimate of Kalman filter
for each continued track.

5.2: Delete lost tracks.
5.3: Create new tracks from unassigned detections.

6: Evaluate the reliability of the tracks and remove
unreliable tracks in T ∗(t).

7: end for

objective function can be defined as follows:

minw
1

2
‖w‖2 + C

N∑
i=1

max
ŷ,ĥ

[w′Φ(xi, ĥ) + L(yi, ŷ, ĥ)]︸ ︷︷ ︸
convex

−C
N∑
i=1

max
h

w′Φ(xi,h)︸ ︷︷ ︸
concave

,

(1)

where parameter C is the relative penalty scalar parameter,
L(yi, ŷ, ĥ) represents the loss function, ŷ the predicted label,
and yi the ground truth label. In particular, we use 0-1 loss
for object detection, i.e., L(yi, ŷ, ĥ) = 0 if ŷ = yi and
1 otherwise. The objective function (1) can be viewed as
minimizing the sum of a convex and concave function and
it can be solved by the general Convex-Concave Procedure
(CCCP), which is a iterative procedure that guarantees the
convergence to a local minimum or a stationary point of the
objective function.

The HA-SSVM is extended from the adaptive SSVM
(A-SSVM) [8], which is a model-transform-based domain
adaptation method. Given the source model wS , the basic
idea of A-SSVM is to learn a new decision boundary in
the target domain close to the original source decision one.
We denote by w the target domain model, ∆w = w −
wS , A-SSVM solve the following optimization problem:
min∆wR(∆w) + CL(∆w,DT

l ), where R is a regularizer,
L represents the loss term on target data, and C is a penalty
scalar parameter as in (1). Assume multiple target domain
exists, instead of doing isolated single source-to-target adap-
tation with A-SSVM, HA-SSVM organizes target domains
into a hierarchical adaptation tree. A-SSVM is served as a
basic element for each parent-to-child adaptation. We refer



the readers to [9] for more details. In the following, we give
concrete example of applying such hierarchical adaptation
strategy for online domain adaptation.

Assume we have target domain images It, i ∈ [1, N ].
Without losing generality, assume at frame t, we have 3
pedestrians. The category model we have learned at frame
t− 1 is denoted by wt−1

c . The category model and instance
models at frame t are denoted by wt

c, wt
ij
, j ∈ [1, 3] respec-

tively. wt
ij

is the parameter of the instance classifier i and
it is learned with pedestrian example j and all the negative
examples in frame t. We denote the training examples for wt

ij

by DTj . Then the objective function of HOLDA is written
as follows:

J(w) =
1

2
‖wt

c − wt−1
c ‖2 + C

∑3
j=1 L(wt

c;DTj )

+
1

2
‖wt

i1
− wt

c‖2 + CL(wt
i1

;DT1)

+
1

2
‖wt

i2
− wt

c‖2 + CL(wt
i2

;DT2)

+
1

2
‖wt

i3
− wt

c‖2 + CL(wt
i3

;DT3)

(2)

where t ∈ [0, N ], w0
c = wS , C > 0 is the trade-off parameter.

For DPM, L(w;D) is the training loss which is defined as:
L(w;D) =

∑N
i=1 maxŷ,ĥ[w′Φ(xi, ĥ) + L(yi, ŷ, ĥ)] −∑N

i=1 maxh w′Φ(xi,h). where L(yi, ŷ, ĥ) is the 0-1 loss as
in 1.

Equation 2 follows a multi-task learning paradigm form,
where the optimization of each wt

ij
can be understood as an

individual task. After training with N frames, we obtained
an adapted classifier with parameter wN

c . At testing time, we
can directly apply the linear decision function:

f(x) = max
h∈H

wN
c

′
Φ(x,h) . (3)

Connecting with our MOT, the overall algorithm of hi-
erarchical online domain adaptation is described in Alg. 2.
We denote by HOLDA-MOT the proposed method. Given
a source domain trained detector wS and target domain se-
quence of N frames, the first step is to apply MOT proposed
in Alg. 1 to obtain refined trajectories T ∗(t), t ∈ [1, N ]. With
these trajectories, we also obtain refined detections d∗s(t)
on each frame. d∗s(t) consists of the associated bounding
boxes of the trajectories, which are more confident detections
than the original ones, i.e., ds(t). At frame t, we can build
the hierarchical model according to the current trajectory
T ∗(t), i.e. the leaf nodes are corresponding to the individual
pedestrians d∗s(t) and they will be used to train instance
detectors wt

i. Then we extract negative samples from the
background of frame t. A non-negative region is used to
avoid selecting false negative examples. With the positive and
negatives examples, we can optimize the hierarchical model
at current frame and obtain an adapted category detector wt

c.
In the next frame t+1, wt

c will be used as source detector and
adapted to wt+1

c . The intuition behind this is that at frame t
the knowledge from the previous frames are encoded in wt

c;
then, by adapting wt

c to wt+1
c , wt+1

c keeps the knowledge of
the previous frames at the same time that learns from the

Algorithm 2 HOLDA-MOT
Input:
Target domain sequence It, t ∈ [1, N ]
Source domain detector wS

Output: adapted target domain detector wT

0: Apply wS to It, t ∈ [1, N ] and obtain detections Ds =
{ds(t)|t ∈ [1, N ]}.
1: w0

c = wS

2: Apply MOT (Alg. 1) on Ds to obtain trajectories
T ∗(t), t ∈ [1, N ].
3: for t=1,2, ..., N, do
4: Build the hierarchical model according to T ∗(t).
5: Get the positive examples (i.e. pedestrians) d∗s(t) from
T ∗(t).
6: Extract background examples outside the non-negative
region.
7: Optimize the objective function 2 and obtain wt

c.
8: end for
9: wT = wN

c

examples at frame t+ 1. In this way, the final adapted target
domain detector is wN

c .

IV. EXPERIMENTS

A. Datasets

As source-domain, we use the same virtual-world dataset
than [8]. For the target domain, we use three sequences
from ETH dataset [26], namely ’BAHNHOF’, ’JELMOLI’,
’SUNNY DAY’, and denoted by ETH0, ETH1, ETH2 respec-
tively. The ETH data was acquired from a ”robot perspective”
moving in side walks. These sequences are acquired with the
same camera but from three different scenarios, that here we
consider domains. Since we focus on unsupervised domain
adaptation, the fact of using as source domain a virtual-world
dataset with automatically provided ground truth, implies
that our final adapted pedestrian detector (HOLDA-MOT)
has been trained without human annotations.

The experiments are carried out according to Caltech
pedestrian detection benchmark [27]. Therefore, we use per-
image evaluation, i.e., false positives per image (FPPI) vs.
miss rate. Following the Caltech benchmark protocol, the
detected pedestrians are of height ≥ 50 pixels.

B. HOLDA in unlabeled target domains

In this section, we evaluate the accuracy of the proposed
HOLDA-MOT under the fully unsupervised setting, i.e., no
target annotations are provided. We present two types of
experiments.

In the first type of experiment, we assume that an unla-
belled video (target domain) is given to us and we must use
it to adapt our current DPM model (learnt with virtual data
in our case) without performing human annotation of the
objects of interest (pedestrians in this case). Since, a priori,
the more training data the better, with this type of experiment
we assess if our proposal is able to use as many pedestrians
as possible from the target video in order to perform the



TABLE I
EVALUATED DA METHODS

Method Description Require labelled
data?

SRC Source domain classifier (no adaptation). NO
A-SSVM[8] A batch learning baseline, adaptive SSVM. YES
INC-
MIL[16]

The incremental adaptive DPM based on
multiple instance learning. YES

INT-
MIL[16]

The incremental adaptive DPM based on
multiple instance learning, with human in
the loop.

Limited (Human in
the loop)

HOLDA-
MOT

The proposed hierarchical online domain
adaptation, incorporating multiple object
tracking.

NO

domain adaptation. Accordingly, in this case we evaluate
the accuracy of our method by comparing the pedestrians
detected using our final adapted pedestrian model, with
respect to the ones annotated by a human oracle. Of course,
considering also false positives, which in the case of the
human oracle are zero. We do so for each ETH domain
separately.

In the second type of experiment, we evaluate the accuracy
of the adapted detector in totally unseen data of the same tar-
get domain. For that, given one of the ETH domains (videos)
we split it in two parts, i.e., adaptation and evaluation. In this
case, we try different splits.

For the first type of experiments, we compare our results
to several baselines [16] described in Table I. Note that,
INC-MIL and A-SSVM require labeled training data, and
around 100 annotated training images are used in these
experiments (i.e., reproducing [16]). INT-MIL does not use
ground truth but requires a human oracle to click out false
positives during the training process. Our algorithm does not
require any ground truth information, neither a human oracle
in the adaptation loop. The results are shown in Fig. 3.
The proposed method HOLDA-MOT improves the source
detector more than 10 percentage points on each sequence
and approaches the batch learning method A-SSVM, even
outperforms A-SSVM on ETH1. Note that A-SSVM version
uses all the ground truth provided by the human oracle.

For the second type of experiments, we split the sequence
into training and testing sets. For ETH0, because it has more
images, we train with 200, 400 and 600 consecutive images
and test on the rest. The main goal of this experiment is to
investigate the generalization of the adapted detector and to
evaluate its accuracy on unseen images. Fig. 3 shows the
accuracy for each sequence. As we can see from the results,
HOLDA-MOT does the adaptation to unseen images. The
portion of unlabeled images does have an impact to the final
adapted detector. Around one third of the unlabeled sequence
is usually adequate to train the adapted detector.

V. CONCLUSION

In this work, we present an online domain adaptation
framework based on the hierarchical adaptation model. The
hierarchical model is built on each frame, where leaf nodes
are corresponding to pedestrian instance detectors and the
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Fig. 2. Comparative results.

root node is corresponding to the pedestrian category de-
tector. The optimization of the hierarchical model is done
by a online version of HA-SSVM [9]. The online domain
adaptation achieves comparable accuracy to the batch learned
models while does not require re-visiting source domain data
neither labeled target domain training data. It improves con-
siderably the source classifier too. As the proposed algorithm
is general, it could be applied to other SVM-based classifiers
as well.
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