|
David Aldavert and Marçal Rusiñol. 2018. Manuscript text line detection and segmentation using second-order derivatives analysis. 13th IAPR International Workshop on Document Analysis Systems.293–298.
Abstract: In this paper, we explore the use of second-order derivatives to detect text lines on handwritten document images. Taking advantage that the second derivative gives a minimum response when a dark linear element over a
bright background has the same orientation as the filter, we use this operator to create a map with the local orientation and strength of putative text lines in the document. Then, we detect line segments by selecting and merging the filter responses that have a similar orientation and scale. Finally, text lines are found by merging the segments that are within the same text region. The proposed segmentation algorithm, is learning-free while showing a performance similar to the state of the art methods in publicly available datasets.
Keywords: text line detection; text line segmentation; text region detection; second-order derivatives
|
|
|
Daniel Hernandez, Juan Carlos Moure, Toni Espinosa, Alejandro Chacon, David Vazquez and Antonio Lopez. 2016. Real-time 3D Reconstruction for Autonomous Driving via Semi-Global Matching. GPU Technology Conference.
Abstract: Robust and dense computation of depth information from stereo-camera systems is a computationally demanding requirement for real-time autonomous driving. Semi-Global Matching (SGM) [1] approximates heavy-computation global algorithms results but with lower computational complexity, therefore it is a good candidate for a real-time implementation. SGM minimizes energy along several 1D paths across the image. The aim of this work is to provide a real-time system producing reliable results on energy-efficient hardware. Our design runs on a NVIDIA Titan X GPU at 104.62 FPS and on a NVIDIA Drive PX at 6.7 FPS, promising for real-time platforms
Keywords: Stereo; Autonomous Driving; GPU; 3d reconstruction
|
|
|
Alejandro Gonzalez Alzate, Sebastian Ramos, David Vazquez, Antonio Lopez and Jaume Amores. 2015. Spatiotemporal Stacked Sequential Learning for Pedestrian Detection. Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015.3–12.
Abstract: Pedestrian classifiers decide which image windows contain a pedestrian. In practice, such classifiers provide a relatively high response at neighbor windows overlapping a pedestrian, while the responses around potential false positives are expected to be lower. An analogous reasoning applies for image sequences. If there is a pedestrian located within a frame, the same pedestrian is expected to appear close to the same location in neighbor frames. Therefore, such a location has chances of receiving high classification scores during several frames, while false positives are expected to be more spurious. In this paper we propose to exploit such correlations for improving the accuracy of base pedestrian classifiers. In particular, we propose to use two-stage classifiers which not only rely on the image descriptors required by the base classifiers but also on the response of such base classifiers in a given spatiotemporal neighborhood. More specifically, we train pedestrian classifiers using a stacked sequential learning (SSL) paradigm. We use a new pedestrian dataset we have acquired from a car to evaluate our proposal at different frame rates. We also test on a well known dataset: Caltech. The obtained results show that our SSL proposal boosts detection accuracy significantly with a minimal impact on the computational cost. Interestingly, SSL improves more the accuracy at the most dangerous situations, i.e. when a pedestrian is close to the camera.
Keywords: SSL; Pedestrian Detection
|
|
|
Petia Radeva, Joan Serrat and Enric Marti. 1995. A snake for model-based segmentation. Proc. Conf. Fifth Int Computer Vision.816–821.
Abstract: Despite the promising results of numerous applications, the hitherto proposed snake techniques share some common problems: snake attraction by spurious edge points, snake degeneration (shrinking and attening), convergence and stability of the deformation process, snake initialization and local determination of the parameters of elasticity. We argue here that these problems can be solved only when all the snake aspects are considered. The snakes proposed here implement a new potential eld and external force in order to provide a deformation convergence, attraction by both near and far edges as well as snake behaviour selective according to the edge orientation. Furthermore, we conclude that in the case of model-based seg mentation, the internal force should include structural information about the expected snake shape. Experiments using this kind of snakes for segmenting bones in complex hand radiographs show a signicant improvement.
Keywords: snakes; elastic matching; model-based segmenta tion
|
|
|
German Ros, J. Guerrero, Angel Sappa, Daniel Ponsa and Antonio Lopez. 2013. Fast and Robust l1-averaging-based Pose Estimation for Driving Scenarios. 24th British Machine Vision Conference.
Abstract: Robust visual pose estimation is at the core of many computer vision applications, being fundamental for Visual SLAM and Visual Odometry problems. During the last decades, many approaches have been proposed to solve these problems, being RANSAC one of the most accepted and used. However, with the arrival of new challenges, such as large driving scenarios for autonomous vehicles, along with the improvements in the data gathering frameworks, new issues must be considered. One of these issues is the capability of a technique to deal with very large amounts of data while meeting the realtime
constraint. With this purpose in mind, we present a novel technique for the problem of robust camera-pose estimation that is more suitable for dealing with large amount of data, which additionally, helps improving the results. The method is based on a combination of a very fast coarse-evaluation function and a robust ℓ1-averaging procedure. Such scheme leads to high-quality results while taking considerably less time than RANSAC.
Experimental results on the challenging KITTI Vision Benchmark Suite are provided, showing the validity of the proposed approach.
Keywords: SLAM
|
|
|
Diego Cheda, Daniel Ponsa and Antonio Lopez. 2012. Monocular Egomotion Estimation based on Image Matching. 1st International Conference on Pattern Recognition Applications and Methods.425–430.
|
|
|
German Ros, Angel Sappa, Daniel Ponsa and Antonio Lopez. 2012. Visual SLAM for Driverless Cars: A Brief Survey. IEEE Workshop on Navigation, Perception, Accurate Positioning and Mapping for Intelligent Vehicles.
|
|
|
German Ros, J. Guerrero, Angel Sappa and Antonio Lopez. 2013. VSLAM pose initialization via Lie groups and Lie algebras optimization. Proceedings of IEEE International Conference on Robotics and Automation.5740–5747.
Abstract: We present a novel technique for estimating initial 3D poses in the context of localization and Visual SLAM problems. The presented approach can deal with noise, outliers and a large amount of input data and still performs in real time in a standard CPU. Our method produces solutions with an accuracy comparable to those produced by RANSAC but can be much faster when the percentage of outliers is high or for large amounts of input data. On the current work we propose to formulate the pose estimation as an optimization problem on Lie groups, considering their manifold structure as well as their associated Lie algebras. This allows us to perform a fast and simple optimization at the same time that conserve all the constraints imposed by the Lie group SE(3). Additionally, we present several key design concepts related with the cost function and its Jacobian; aspects that are critical for the good performance of the algorithm.
Keywords: SLAM
|
|
|
Aura Hernandez-Sabate, Lluis Albarracin, Daniel Calvo and Nuria Gorgorio. 2016. EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game. 5th International Conference Games and Learning Alliance.50–59. (LNCS.)
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|
|
Saad Minhas and 6 others. 2016. LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode. 14th European Conference on Computer Vision Workshops.894–900. (LNCS.)
Abstract: Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.
Keywords: Simulation environment; Automated Driving; Driver-Vehicle interaction
|
|