|
Carme Julia, Angel Sappa, Felipe Lumbreras and Antonio Lopez. 2008. Recovery of Surface Normals and Reflectance from Different Lighting Conditions. 5th International Conference on Image Analysis and Recognition.315–325. (LNCS.)
|
|
|
Antonio Lopez, J. Hilgenstock, A. Busse, Ramon Baldrich, Felipe Lumbreras and Joan Serrat. 2008. Nightime Vehicle Detecion for Intelligent Headlight Control. Advanced Concepts for Intelligent Vision Systems, 10th International Conference, Proceedings,.113–124. (LNCS.)
Keywords: Intelligent Headlights; vehicle detection
|
|
|
Mohammad Rouhani and Angel Sappa. 2009. A Novel Approach to Geometric Fitting of Implicit Quadrics. 8th International Conference on Advanced Concepts for Intelligent Vision Systems. Springer Berlin Heidelberg, 121–132. (LNCS.)
Abstract: This paper presents a novel approach for estimating the geometric distance from a given point to the corresponding implicit quadric curve/surface. The proposed estimation is based on the height of a tetrahedron, which is used as a coarse but reliable estimation of the real distance. The estimated distance is then used for finding the best set of quadric parameters, by means of the Levenberg-Marquardt algorithm, which is a common framework in other geometric fitting approaches. Comparisons of the proposed approach with previous ones are provided to show both improvements in CPU time as well as in the accuracy of the obtained results.
|
|
|
David Aldavert, Ricardo Toledo, Arnau Ramisa and Ramon Lopez de Mantaras. 2009. Visual Registration Method For A Low Cost Robot: Computer Vision Systems. 7th International Conference on Computer Vision Systems. Springer Berlin Heidelberg, 204–214. (LNCS.)
Abstract: An autonomous mobile robot must face the correspondence or data association problem in order to carry out tasks like place recognition or unknown environment mapping. In order to put into correspondence two maps, most methods estimate the transformation relating the maps from matches established between low level feature extracted from sensor data. However, finding explicit matches between features is a challenging and computationally expensive task. In this paper, we propose a new method to align obstacle maps without searching explicit matches between features. The maps are obtained from a stereo pair. Then, we use a vocabulary tree approach to identify putative corresponding maps followed by the Newton minimization algorithm to find the transformation that relates both maps. The proposed method is evaluated in a typical office environment showing good performance.
|
|
|
Naveen Onkarappa and Angel Sappa. 2010. On-Board Monocular Vision System Pose Estimation through a Dense Optical Flow. 7th International Conference on Image Analysis and Recognition. Springer Berlin Heidelberg, 230–239. (LNCS.)
Abstract: This paper presents a robust technique for estimating on-board monocular vision system pose. The proposed approach is based on a dense optical flow that is robust against shadows, reflections and illumination changes. A RANSAC based scheme is used to cope with the outliers in the optical flow. The proposed technique is intended to be used in driver assistance systems for applications such as obstacle or pedestrian detection. Experimental results on different scenarios, both from synthetic and real sequences, shows usefulness of the proposed approach.
|
|
|
Aura Hernandez-Sabate, Debora Gil, David Roche, Monica M. S. Matsumoto and Sergio S. Furuie. 2011. Inferring the Performance of Medical Imaging Algorithms. In Pedro Real, Daniel Diaz-Pernil, Helena Molina-Abril, Ainhoa Berciano and Walter Kropatsch, eds. 14th International Conference on Computer Analysis of Images and Patterns. Berlin, Springer-Verlag Berlin Heidelberg, 520–528. (LNCS.)
Abstract: Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.
|
|
|
Marçal Rusiñol, David Aldavert, Dimosthenis Karatzas, Ricardo Toledo and Josep Llados. 2011. Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content. Advances in Information Retrieval. In P. Clough and 6 others, eds. 33rd European Conference on Information Retrieval. Berlin, Springer, 314–325. (LNCS.)
Abstract: In this paper we propose an efficient queried-by-example retrieval system which is able to retrieve trademark images by similarity from patent and trademark offices' digital libraries. Logo images are described by both their semantic content, by means of the Vienna codes, and their visual contents, by using shape and color as visual cues. The trademark descriptors are then indexed by a locality-sensitive hashing data structure aiming to perform approximate k-NN search in high dimensional spaces in sub-linear time. The resulting ranked lists are combined by using the Condorcet method and a relevance feedback step helps to iteratively revise the query and refine the obtained results. The experiments demonstrate the effectiveness and efficiency of this system on a realistic and large dataset.
|
|
|
Yainuvis Socarras, David Vazquez, Antonio Lopez, David Geronimo and Theo Gevers. 2012. Improving HOG with Image Segmentation: Application to Human Detection. In J. Blanc-Talon et al., ed. 11th International Conference on Advanced Concepts for Intelligent Vision Systems. Springer Berlin Heidelberg, 178–189. (LNCS.)
Abstract: In this paper we improve the histogram of oriented gradients (HOG), a core descriptor of state-of-the-art object detection, by the use of higher-level information coming from image segmentation. The idea is to re-weight the descriptor while computing it without increasing its size. The benefits of the proposal are two-fold: (i) to improve the performance of the detector by enriching the descriptor information and (ii) take advantage of the information of image segmentation, which in fact is likely to be used in other stages of the detection system such as candidate generation or refinement.
We test our technique in the INRIA person dataset, which was originally developed to test HOG, embedding it in a human detection system. The well-known segmentation method, mean-shift (from smaller to larger super-pixels), and different methods to re-weight the original descriptor (constant, region-luminance, color or texture-dependent) has been evaluated. We achieve performance improvements of 4:47% in detection rate through the use of differences of color between contour pixel neighborhoods as re-weighting function.
Keywords: Segmentation; Pedestrian Detection
|
|
|
Patricia Marquez, Debora Gil and Aura Hernandez-Sabate. 2012. A Complete Confidence Framework for Optical Flow. In Andrea Fusiello, V.M., Rita Cucchiara, ed. 12th European Conference on Computer Vision – Workshops and Demonstrations. Florence, Italy, October 7-13, 2012, Springer-Verlag, 124–133. (LNCS.)
Abstract: Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Keywords: Optical flow, confidence measures, sparsification plots, error prediction plots
|
|
|
Fernando Barrera, Felipe Lumbreras and Angel Sappa. 2012. Evaluation of Similarity Functions in Multimodal Stereo. 9th International Conference on Image Analysis and Recognition. Springer Berlin Heidelberg, 320–329. (LNCS.)
Abstract: This paper presents an evaluation framework for multimodal stereo matching, which allows to compare the performance of four similarity functions. Additionally, it presents details of a multimodal stereo head that supply thermal infrared and color images, as well as, aspects of its calibration and rectification. The pipeline includes a novel method for the disparity selection, which is suitable for evaluating the similarity functions. Finally, a benchmark for comparing different initializations of the proposed framework is presented. Similarity functions are based on mutual information, gradient orientation and scale space representations. Their evaluation is performed using two metrics: i) disparity error, and ii) number of correct matches on planar regions. In addition to the proposed evaluation, the current paper also shows that 3D sparse representations can be recovered from such a multimodal stereo head.
Keywords: Aveiro, Portugal
|
|