
Evaluation of Similarity Functions in
Multimodal Stereo

Fernando Barrera1, Felipe Lumbreras1,2 and Angel D. Sappa1

1 Computer Vision Center, Campus UAB, Bellaterra, Spain
2 Computer Science Department, Universitat Autonóma de Barcelona, Spain
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Abstract. This paper presents an evaluation framework for multimodal
stereo matching, which allows to compare the performance of four simi-
larity functions. Additionally, it presents details of a multimodal stereo
head that supply thermal infrared and color images, as well as, aspects
of its calibration and rectification. The pipeline includes a novel method
for the disparity selection, which is suitable for evaluating the similar-
ity functions. Finally, a benchmark for comparing different initializations
of the proposed framework is presented. Similarity functions are based
on mutual information, gradient orientation and scale space represen-
tations. Their evaluation is performed using two metrics: i) disparity
error, and ii) number of correct matches on planar regions. In addition
to the proposed evaluation, the current paper also shows that 3D sparse
representations can be recovered from such a multimodal stereo head.
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1 Introduction

Stereo matching is a classical problem in computer vision. Over the past years, a
large number of researches have been focused on matching methods for binocular
stereovision systems, which traditionally are made from color cameras (e.g., [1],
[2], and [3]). However, a recent family of thermal infrared cameras have opened
the possibility of combining them into a novel multimodal stereo rig. Thus, a
new kind of stereo head that registers two spectral bands becomes a reality;
visible (VS) and Long-Wavelength InfraRed (LWIR).

Initially, it may seem that disparity maps obtained from a multimodal stereo
head (LWIR/VS) would lead to representations with a higher information con-
tent, in other words, not only depth but also temperature is provided. How-
ever, before obtaining such a kind of rich representation the correspondences
between infrared and color images should be found. Note that these images are
significantly different, making this action a challenging task. Furthermore, few
approaches have been proposed in the literature and is difficult to identify the
best option to develop a robust matching algorithm able to overcome infrared
and color variations.

Krotosky et al. [4] introduce a matching algorithm for regions that contain
human body silhouettes, both in thermal infrared and visible spectrum. They



extract rectangular windows from these images. Next, their degree of similarity
is measured by using mutual information. Although, this approach is valid for
tracking people or depth estimation of pedestrians, is an application-oriented
solution. Furthermore, it assumes that hot points correspond to persons, and
only those regions should be matched.

Recently, Torabi et al. [5] performs a comparative evaluation of dense stereo
correspondence algorithms in the multimodal field, under the same restrictions.
They conclude that similarity functions, previously used in VS/VS stereo heads,
such as Normalized Cross-Correlation (NCC) and Histograms of Oriented Gra-
dients (HOG) [6] are highly sensitive to dissimilarities even in presence of edges.
In contrast, mutual information and Local Self-Similarity (LSS) [7] are the most
accurate and discriminative correspondence measures among the evaluated ones.

In the current work, an evaluation similar to Torabi et al. [5] is performed
but without those restrictions (application domain and image regions). Hence,
our results can be used to predict the behavior of a cost function in a general
context. The evaluation starts by selecting the most suitable similarity functions
for the multimodal stereo matching. The selection is based on the study of related
works, not only on multimodal stereo but in similar problems where information
from different modalities need to be merged. Similarity functions frequently used
in VS/VS stereo, are not considered since they assume a linear correlation and
our problem is clearly non linear. On the other hand, LLS [7] is excluded from
the current evaluation since is an application oriented similarity measure.

The proposed evaluation framework includes four similarity functions. The
first one is Mutual information (I), which has been successfully used in multi-
modal image registration, particularly in medical applications as well as in stereo
systems with different lighting conditions (e.g., [3]). The next two functions are
gradient information (G) and its combination with mutual information (IG)
[8]. Finally, The gradient and mutual information in a scale-space representa-
tion (IGSS) is also evaluated [9]. Our evaluation differs from previous studies
mainly in three aspects: i) the LWIR/VS stereo problem is tackled; ii) a large
multimodal dataset is used for the evaluation; iii) it is not oriented to a specific
application. Note that in all the cases the optimal parameters of the similarity
functions are found in order to do a fair evaluation.

The multimodal dataset consists of a set of planar regions at different position
and orientation, which allows us to quantify the accuracy of similarity functions.
Moreover, it exploits an evaluation criterion used for comparing of dense stereo
algorithm. Thus, it is obtained an error statistic on the whole dataset. The paper
is organized as follows. Section 2 introduces the different similarity measures.
Then, experimental results and evaluations are provided in Section 3. Finally,
conclusions and final remarks are detailed in Section 4.

2 SIMILARITY FUNCTIONS

Recent works on computational stereo have shown that mutual information is a
nonparametric cost function, which is capable to address non-linear correlated



signals [2]. However, in multimodal stereo problems the use of mutual infor-
mation is not enough to achieve high rates of matching. Mainly, due to that
images are compared only through its information content, ignoring shape infor-
mation. In this section, four similarity functions for a multimodal stereo head
are reviewed. First, mutual information [10] is analyzed; then, the use of gradi-
ent information is introduced; next, a scheme that combines them (i.e., mutual
information and gradient) [8] is described; finally, it is introduced mutual and
gradient information when they are propagated through a scale-space represen-
tation [9].

2.1 Mutual Information

Mutual information (I) measures the amount of information that one random
variable contains about another. It is a useful concept where no prior relation-
ships between the data are known. This is estimated in a local way, for two
windows Il and Ir, which are extracted from V S and LWIR images respec-
tively. These windows are centered on image coordinates: x and x′; and have a
size of wz pixels. Thus, I is defined as follows:

I(Il(x); Ir(x
′)) =

∑
ai∈Il

∑
bj∈Ir

pIlIr (ai, bj) log
pIlIr (ai, bj)

pIl(ai) pIr (bj)
, (1)

where ai and bj are discretized pixel values into Q levels; pIlIr represents their
joint probability mass function; and pIl and pIr are their respective marginal
probability mass functions. Mutual information has a great advantage over other
similarity functions that looking for identical pattern, as occurs in classical stereo
(V S/V S). So, this is able to find linear and nonlinear correlations, taking into
account the whole dependence structure of Il and Ir. Figure 1 depicts almost
locally that this condition is enough for matching windows as the indicated.
However, our experiments have shown that its performance improves when more
information is added. In the next section this issue is covered.

V S | ∇V S | LWIR | ∇LWIR |

Fig. 1. Multimodal images and their corresponding gradient field.

2.2 Gradient Information

Since the images are rectified, not only the search for correspondences is simpli-
fied to one dimension, but also the objects in the scene appear with a similar
aspect (see Fig. 1). This is an important fact because the contours and edges are



regions with a high correlation value. Therefore, they have a high probability of
being correctly matched [11]. The gradient information is obtained as follows:

G(Il(x); Ir(x
′)) =

∑
x∈Il,x’∈Ir

w(θ(x,x’)) min(|∇Il(x)| |∇Ir (x
′)|), (2)

where θ is the angle difference between two gradient vectors; w(θ) is a function
that penalizes those gradient vectors that are not in phase or counter-phase; and
|∇| is the magnitude of the gradient vectors.

As indicated above, the information content of multimodal images is weakly
correlated, except in the contours that appear in both images. Therefore, I could
be enriched using the orientation of gradients in those regions [9].

2.3 Mutual and Gradient Information

The third similarity function evaluated is based on the combination of mutual
and gradient information; it is defined as:

IG(Il(x); Ir(x
′)) = I(Il; Ir) ·G(Il; Ir). (3)

Previous works have shown that the gradient is not stable enough for multi-
modal matching [5] [8], since only the half range of its possible orientation is
useful (it goes from zero to π). Therefore, I helps to G to overcome its loss of
descriptiveness. Although there are different ways to combine them, their prod-
uct has a noise cancellation effect, thus the cost values in a textureless region in
the LWIR image and textured in the VS image are low (the same in the opposite
case). This increases the reliability of correspondences.

2.4 Multiresolution Mutual and Gradient Information

Previous sections have highlighted the importance of using contours and edges in
the matching process. Therefore, in this section a structural analysis of images is
presented. This requires a scale-space representation, which is obtained applying
local derivative operators. The aim is to recover significant information through
a scale-space representation, and boost the accuracy of similarity functions at
a fine level, using as feedback previous coarse levels. In order to do this, the
similarity function presented above is adjusted to a multiresolution scheme. It
works by taking the values of mutual and gradient information (IG) at a certain
scale t, and propagating it following a coarse to fine strategy, from a scale t− 1
to t. The next equation is used to fuse these values:

IGSS(Il(x); Ir(x
′); t) = λ IGt(Il; Ir) + (1− λ)IGt−1(Il; Ir), (4)

where λ is the confidence of current IG.

2.5 Disparity Selection

The four similarity functions presented above (i.e., eqs. (1), (2), (3), and (4))
measure the degree of similarity between two windows Il(x) and Ir(x

′), but



now the problem becomes on searching the right correspondences between Il(x)
and all the possible Ir(x

′). The disparity selection process is tackled as a two
step optimization problem, where the cost computed between a template and
all possible windows on the corresponding searching space is the variable to
optimize. The disparity of each pixel is selected by the Winner-Takes-All (WTA)
method. So, the correct match of a pixel is determined by the position d (image
coordinate) where the following cost function reaches the maximum value:

argmax
d

{I (Il(x, y); Ir(x+ d, y))} , (5)

similarly for the rest of cost functions (eqs. (2), (3), and (4)).
The disparity map obtained in the first step contains mismatchings due to

the costs not always has a global maximum (situation most frequent in stereo
matching of VS and LWIR images than in just VS images). Therefore, a second
step to reject mismatching candidates is added. It consists in labelling as correct
those correspondences with a cost score higher than a given τ threshold. The
selection of threshold τ is evaluated in section 3. Next, these reliable matchings
are used for bounding the searching space in their surrounding. This helps to
discard wrong matching and decrease the sparsity of depth maps.

3 EVALUATION

Before going in detail on the comparative study of similarity functions, the mul-
timodal stereo rig setup and its calibration process are introduced. The multi-
modal stereo rig is built with a LWIR camera (PathFindIR3), and a color camera.
The latter corresponds to the right camera of a commercial stereo vision system
(Bumblebee4), which is used for validating the results, and it does not require
in-field calibration. In summary, two stereo systems coexist (Fig. 2(left)). The
right camera coordinate system of Bumblebee is used as a reference for both
stereo systems. In this way, disparity maps computed from the Bumblebee are
valid for the multimodal stereo and used as an approximation of the structure
of the scene.

Fig. 2. (left) Multimodal stereo rig setup, together with the visible stereo rig. (top)
Original stereo images of the checkerboard pattern. (bottom) Rectified images.

3 [www.flir.com]
4 [www.ptgrey.com]



The multimodal stereo rig has been calibrated using Bouguet’s toolbox [12].
The main challenge in this stage is to make visible the calibration pattern in
both cameras. In order to do this, a special metallic checkerboard has been
made. Figure 2(top) shows a pair of calibration images (LWIR and VS). Once
the cameras have been calibrated, their intrinsic and extrinsic parameters are
known, being possible not only the image rectification but also the estimation
of 3D points from image matches. The images were rectified using the method
proposed in [13], with an accuracy improvement due to the inclusion of distortion
coefficients (radial and tangential) into their camera model. Rectified images are
shown in Fig. 2(bottom).

The evaluation is performed on a set of images taken on real outdoor scenarios
under uncontrolled conditions as lighting, temperature, and depth. It consists
of 46 couples of images with dominant planar geometries, as shown in Fig. 3.
These images were obtained from our multimodal stereo head and are used to
evaluate the performance of the similarity functions.

Fig. 3. Examples of images in the evaluation dataset: (1st row) LWIR images; (2nd
row) color images; (3rd row) planar regions; and (4th row) disparity maps.

Since it is not possible to have an accurate ground truth data, an indirect
method has been envisaged for evaluating the performance of similarity func-
tions. This method consists in measuring the accuracy of disparity values com-
puted by our framework on image regions that are planar surfaces. Actually, the
evaluation is performed in the v-disparity space [14] (see Fig. 4 (right)). That is,
a histogram of disparities in columns direction. The disparity maps are provided
by the Bumblebee and are used for computing these representations.

The interesting point of v-disparity space is that planes in the Euclidean space
are mapped as straight lines. By identifying this straight line, the accuracy of the
similarity functions can be evaluated. This works as follows: firstly, it identifies
the planar regions in the evaluation images (see Fig. 3(3rd row)). Next, their
corresponding contributions in v-disparity space are selected. Finally, a linear
regression by least squares is applied only to this set of points, which provides
the best fitting. In this way, the real position of a plane is estimated from noisy
data. Figure 4 (left) shows the disparity map when an unique plane is recorded



Fig. 4. Evaluation data: (left) Disparity map; (right) v-disparity representation.

by the cameras; Fig. 4 (right) depicts its corresponding v-disparity. Notice that
the number of rows in both plots is the same, but the disparity axis in v-disparity
representation will depend on the position of the plane. In this plot, the straight
line through points represents the ideal disparity values of the plane; it also shows
the variance due to noise that motivates the proposed evaluation procedure.

Once the planar regions in the evaluation images have been identified, and
their corresponding straight lines (`) fitted in the v-disparity representation, an
error function based on Root Mean Squared (RMS) is defined. This measures the
orthogonal distance (dist>) between a disparity value obtained by our frame-
work, and its corresponding ` (which depends on the region it belongs). Thus,
the error is defined as:

R =

(
1

N

∑
x∈P

|dist> (dC (x) , `)|2
) 1

2

, (6)

where R is the RMS error for a given planar region; P is a planar region; dC is
a disparity value inside of this region; and N is the number of pixels belonging
to that region.

In order to evaluate the performance of current framework, the most relevant
parameters are varied as follow: wz = {7, 19, 31}; σ = {0.5, 1, 1.5, ..., 5.5, 6}
and Q = {8, 16, 32, 64}. The σ parameter is the standard deviation of Gaussian
derivative kernel used to obtain the t levels of the scale space representation.

Figure 5 shows the average accumulated error of I, G, IG, and IGSS for
the evaluation dataset. The results are sorted into groups by windows sizes:
{7}, {19}, {31}, and {31, 19, 7} pixels respectively. These plots depict the re-
lationship between the cost values, obtained by a similarity function, and the
error made by assuming that the maximum argument corresponds to the correct
match (Sec. 2.5).

Every point on the plots presented in Fig. 5 represents the error of a set of
matches, with a variable number of elements. The cost values are arranged in
descending order, and the error is computed from the first matched couple, which
has the maximum cost value, till the number of points indicated in the horizontal
axis. For this reason, the range of the curve goes from 0 till the number of pixels
in the images. This help us to visualize how the error increases as soon as more
matches are accepted.

In all cases the combined use of I and G increases the number of good
matches, proving that mutual and gradient information supply complementary



Fig. 5. Average accumulated RMS disparity errors sorted by window size.

information useful in matching process. Figure 5(right) shows how IGSS im-
proves the previous similarity functions. A stable behavior on both, in error and
number of correct matches, is noticeable. The best combination of parameters
is wz = {31, 19, 7}, Q = {32, 16, 8}, and σ = {1.5, 1, 0.5} (the values were
arranged from coarse to fine).

The λ parameter in equation (4) weights the confidence of a IG cost, from a
scale t, in comparison to another computed at previous scale. After an exhaustive
search over the range spanned by λ parameter, it has been found that three scales
are sufficient, and λ = {0.6, 0.5} is the best combination for the IGSS similarity
function (again, the values were arranged from coarse to fine).

Indirectly, Fig. 5 also depicts the relationship between error and τ parameter
(Sec. 2.5). So, insofar as more pixels are matched more mistakes are done. The
selection of the parameter τ depends on the application and the depth of the
scene. For instance, for outdoor images with a depth between 15 and 20 meters,
a τ corresponding to 45% of the pixels in the image is enough to get 3D repre-
sentations as those shown in Fig. 6, giving an average error of about 5% (in the
evaluation dataset).

Figure 6 shows the results obtained with our evaluation framework when
IGSS is used. First and second columns correspond to the rectified images,
thermal infrared and visible images respectively. Third column depicts the 3D
sparse depth maps obtained.

4 CONCLUSIONS

This paper presents an evaluation framework that compares the performance of
four multimodal similarity functions, which are evaluated with two metrics: RMS
error and number of correct matches. The evaluation is performed in v-disparity
space, which allows to consider the noise in the acquisition of the disparity
maps. We have shown that adding gradient information (G) together with a



scale-space analysis improves descriptive ability of a similarity function based
on mutual information. Also, details of the parameter setting are presented (Q,
wz, σ, τ , and λ) and how they affect the performance. Additionally, the different
stages for obtaining sparse depth maps are described, from image acquisition till
depth map computation. Finally, the results obtained from real environments
show that IGSS is useful to find correspondence in multimodal images, in order
to generate sparse 3D representations. Future work will be focused on improving
the disparity selection process in order to obtain dense 3D representations.

ACKNOWLEDGEMENTS

This work was supported by the Spanish Government under Research Program
Consolider Ingenio 2010: MIPRCV (CSD2007-00018) and Projects TIN2011-
25606 and TIN2011-29494-C03-02.

LWIR VS Sparse depth maps

Fig. 6. Example of 3D result.



References

1. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE
Trans. Pattern Anal. Mach. Intell. 25 (2003) 993–1008

2. Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images
with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31(9) (2009)
1582 –1599

3. Egnal, G.: Mutual information as a stereo correspondence measure. Technical
report, University of Pennsylvania (2000)

4. Krotosky, S.J., Trivedi, M.M.: Mutual information based registration of multi-
modal stereo videos for person tracking. Computer Vision and Image Understand-
ing 106 (2007) 270–287

5. Torabi, A., Najafianrazavi, M., Bilodeau, G.A.: A comparative evaluation of mul-
timodal dense stereo correspondence measures. In: IEEE International Symposium
on Robotic and Sensors Environments. (2011) 143 –148

6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Conference on Computer Vision and Pattern Recognition. Volume 1. (2005)
886 –893

7. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos.
In: IEEE Conference on Computer Vision and Pattern Recognition. (2007) 1 –8

8. Pluim, J.P., Maintz, J.B., Viergever, M.A.: Image registration by maximization of
combined mutual information and gradient information. IEEE Trans. on Medical
Imaging 19(8) (2000) 809–814

9. Barrera, F., Lumbreras, F., Sappa, A.: Multimodal template matching based on
gradient and mutual information using scale-space. In: IEEE International Con-
ference on Image Processing. (2010) 2749 –2752

10. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience,
New York, NY, USA (1991)

11. Morris, N., Avidan, S., Matusik, W., Pfister, H.: Statistics of infrared images. In:
IEEE Conference on Computer Vision and Pattern Recognition. (2007) 1–7

12. Bouguet, J.Y.: Camera calibration toolbox for matlab. http://www.vision.

caltech.edu/bouguetj (2010)
13. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo

pairs. Machine Vision and Applications 12(1) (2000) 16–22
14. Labayrade, R., Aubert, D.: A single framework for vehicle roll, pitch, yaw es-

timation and obstacles detection by stereovision. In: IEEE Intelligent Vehicles
Symposium. (2003) 31–36


