toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (up)
Author Aura Hernandez-Sabate; Petia Radeva; Antonio Tovar; Debora Gil edit   pdf
url  openurl
  Title Vessel structures alignment by spectral analysis of ivus sequences Type Conference Article
  Year 2006 Publication Proc. of CVII, MICCAI Workshop Abbreviated Journal  
  Volume Issue Pages 39-36  
  Keywords  
  Abstract Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhaguen (Denmark), Editor  
  Language Summary Language Original Title  
  Series Editor Series Title 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HRT2006 Serial 1552  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil edit   pdf
url  isbn
openurl 
  Title A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound Type Conference Article
  Year 2010 Publication Computing in Cardiology Abbreviated Journal  
  Volume 37 Issue Pages 899-902  
  Keywords  
  Abstract A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0276-6547 ISBN 978-1-4244-7318-2 Medium  
  Area Expedition Conference CINC  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ HSM2010 Serial 1551  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Aura Hernandez-Sabate; Enric Marti edit   pdf
url  doi
openurl 
  Title Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy Type Conference Article
  Year 2010 Publication 8th Medical Imaging Abbreviated Journal  
  Volume 7623 Issue 762304 Pages 304  
  Keywords  
  Abstract Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPIE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010a Serial 1522  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate; Daniel Kondermann edit   pdf
url  doi
isbn  openurl
  Title When Is A Confidence Measure Good Enough? Type Conference Article
  Year 2013 Publication 9th International Conference on Computer Vision Systems Abbreviated Journal  
  Volume 7963 Issue Pages 344-353  
  Keywords Optical flow, confidence measure, performance evaluation  
  Abstract Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
 
  Address St Petersburg; Russia; July 2013  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-39401-0 Medium  
  Area Expedition Conference ICVS  
  Notes IAM;ADAS; 600.044; 600.057; 600.060; 601.145 Approved no  
  Call Number IAM @ iam @ MGH2013a Serial 2218  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title Evaluation of the Capabilities of Confidence Measures for Assessing Optical Flow Quality Type Conference Article
  Year 2013 Publication ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars Abbreviated Journal  
  Volume Issue Pages 624-631  
  Keywords  
  Abstract Assessing Optical Flow (OF) quality is essential for its further use in reliable decision support systems. The absence of ground truth in such situations leads to the computation of OF Confidence Measures (CM) obtained from either input or output data. A fair comparison across the capabilities of the different CM for bounding OF error is required in order to choose the best OF-CM pair for discarding points where OF computation is not reliable. This paper presents a statistical probabilistic framework for assessing the quality of a given CM. Our quality measure is given in terms of the percentage of pixels whose OF error bound can not be determined by CM values. We also provide statistical tools for the computation of CM values that ensures a given accuracy of the flow field.  
  Address Sydney; Australia; December 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVTT:E2M  
  Notes IAM; ADAS; 600.044; 600.057; 601.145 Approved no  
  Call Number Admin @ si @ MGH2013b Serial 2351  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
 

 
Author Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska edit   pdf
url  openurl
  Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
  Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal  
  Volume 11384 Issue Pages 393-405  
  Keywords Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution  
  Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ PSH2018 Serial 3251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: