toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title An overview of incremental feature extraction methods based on linear subspaces Type Journal Article
  Year 2018 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 145 Issue Pages 219-235  
  Keywords  
  Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0950-7051 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DFH2018 Serial 3090  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil edit   pdf
doi  openurl
  Title Continuous head pose estimation using manifold subspace embedding and multivariate regression Type Journal Article
  Year 2018 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 18325 - 18334  
  Keywords Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression  
  Abstract In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018b Serial 3091  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: