|
Mariano Vazquez, Ruth Aris, Guillaume Hozeaux, R.Aubry, P.Villar, Jaume Garcia, et al. (2011). "A massively parallel computational electrophysiology model of the heart " . International Journal for Numerical Methods in Biomedical Engineering, 27, 1911–1929.
Abstract: This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.
Keywords: computational electrophysiology; parallelization; finite element methods
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, Marçal Rusiñol, & Francesc J. Ferri. (2018). "Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction " . Journal of Mathematical Imaging and Vision, 60(4), 512–524.
Abstract: This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
|
|
|
Josep Llados, Jaime Lopez-Krahe, & Enric Marti. (1996). "Hand drawn document understanding using the straight line Hough transform and graph matching " In Proceedings of the 13th International Pattern Recognition Conference (ICPR’96) (Vol. 2, pp. 497–501). Vienna , Austria.
Abstract: This paper presents a system to understand hand drawn architectural drawings in a CAD environment. The procedure is to identify in a floor plan the building elements, stored in a library of patterns, and their spatial relationships. The vectorized input document and the patterns to recognize are represented by attributed graphs. To recognize the patterns as such, we apply a structural approach based on subgraph isomorphism techniques. In spite of their value, graph matching techniques do not recognize adequately those building elements characterized by hatching patterns, i.e. walls. Here we focus on the recognition of hatching patterns and develop a straight line Hough transform based method in order to detect the regions filled in with parallel straight fines. This allows not only to recognize filling patterns, but it actually reduces the computational load associated with the subgraph isomorphism computation. The result is that the document can be redrawn by editing all the patterns recognized
|
|
|
Ole Vilhelm-Larsen, Petia Radeva, & Enric Marti. (1995). "Guidelines for choosing optimal parameters of elasticity for snakes " In Computer Analysis Of Images And Patterns (Vol. 970, pp. 106–113). Lecture Notes in Computer Science.
Abstract: This paper proposes a guidance in the process of choosing and using the parameters of elasticity of a snake in order to obtain a precise segmentation. A new two step procedure is defined based on upper and lower bounds on the parameters. Formulas, by which these bounds can be calculated for real images where parts of the contour may be missing, are presented. Experiments on segmentation of bone structures in X-ray images have verified the usefulness of the new procedure.
|
|
|
Guillermo Torres, Jan Rodríguez Dueñas, Sonia Baeza, Antoni Rosell, Carles Sanchez, & Debora Gil. (2023). "Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images " In 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023.
Abstract: This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.
|
|
|
Pau Cano, Alvaro Caravaca, Debora Gil, & Eva Musulen. (2023). "Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images ".
Abstract: This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori.
|
|
|
Antonio Esteban Lansaque. (2014)." 3D reconstruction and recognition using structured ligth" (Vol. 179). Master's thesis, , .
Abstract: This work covers the problem of 3D reconstruction, recognition and 6DOF pose estimation. The goal of this project is to reconstruct a 3D scene and to align an object model of the industrial pieces onto the reconstructed scene. The reconstruction algorithm is based on stereo techniques and the recognition algorithm is based on SHOT descriptors computed on a set of uniform keypoints. Correspondences are used to estimate a first 6DOF transformation that maps the model onto the scene and then ICP algorithm is used to refine the transformation. In order to check the effectiveness of the proposed algorithm, several experiments were performed. These experiments were conducted on a lab environment in order to get results under the same conditions in all of them. Although obtained results are not real time results, the proposed algorithm ends up with high rates of object recognition.
|
|
|
Aura Hernandez-Sabate, Petia Radeva, Antonio Tovar, & Debora Gil. (2006). "Vessel structures alignment by spectral analysis of ivus sequences " In Proc. of CVII, MICCAI Workshop (pp. 39–36). 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06). Copenhaguen (Denmark),.
Abstract: Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.
|
|
|
Misael Rosales, Petia Radeva, Oriol Rodriguez-Leor, & Debora Gil. (2009). "Modelling of image-catheter motion for 3-D IVUS " . Medical image analysis, 13(1), 91–104.
Abstract: Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.
Keywords: Intravascular ultrasound (IVUS); Motion estimation; Motion decomposition; Fourier
|
|
|
Aura Hernandez-Sabate, Debora Gil, Eduard Fernandez-Nofrerias, Petia Radeva, & Enric Marti. (2009). "Approaching Artery Rigid Dynamics in IVUS " . IEEE Transactions on Medical Imaging, 28(11), 1670–1680.
Abstract: Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.
Keywords: Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.
|
|