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Abstract 

This paper presents a system to understand hand drawn 
architectural drawings in a CAD environment. The pro- 
cedure is to identijy in a floor plan the building elements, 
stored in a library of patterns, and their spatial relation- 
ships. The vectorized input document and the patterns to 
recognize are represented by attributed graphs. To recog- 
nize the patterns a such, we apply a structural approach 
based on subgraph isomorphism techniques. In spite of 
their value, graph xrzatching techniques do not recognize ad- 
equately those building elements characterized by hatch- 
ing patterns, i.e. walls. Here we focus on the recognition 
of hatching patterns and we develop a straight line Hough 
transform (SLHT) based method in order to detect regions 
jilled in with paraljel straight lines. This allows not only to 
recognize$lling patterns, but it actually reduces the compu- 
tational load associated to the subgraph isomorphism com- 
putation. The result is then that the document can be re- 
drawn by editing all the patterns recognized. 

1. Introduction 

CAD systems are a tool of great help to create and modify 
technical documents efficiently. The field of document im- 
age analysis allows to solve the reverse problem: convert- 
ing paper-based drawings for their integration into a CAD 
environment. Here we focus on hand drawn floor plans for 
which we propose an alternative CAD system input tech- 
nique that allows to create new CAD documents by means 
of hand drawn sket Ches. 

Attributed relational graphs have lately become a power- 
ful technique to represent and recognize line drawings. Re- 
cognition is performed using graph matching procedures 
that find a morphism between a model graph and an input 
graph representing the input document. Some outstanding 
examples can be found in [2, 5, 71. Traditionally, graph 

matching uses backtracking tree search procedures that re- 
quire an exponential time of computation in the worst case. 
To speed up these procedures and prune the search space 
some heuristic techniques have been proposed. Discrete re- 
laxation [3] is a constraint propagation technique that allows 
the removal of inconsistent hypotheses before tree search 
expansion. Another obstacleis to deal with disturbed graphs 
obtained from noisy data. In hand drawn documents this 
problem is clearly noticeable because of the uncertainty in- 
duced by hand drawn strokes. In this case, inexact graph 
matching [l] must be performed. 

In the current work we present a system to understand 
hand drawn floor plans recognizing the building elements 
(doors, walls, etc) and their topological properties. The in- 
put document is scanned and vectorized [9] giving an at- 
tributed graph. This graph is matched against model graphs 
representing the building elements. The matching process 
uses AC4 algorithm [l 11 based on discrete relaxation tech- 
niques. To speed up the interpretation process, we use some 
structural properties of the document elements as heuristic 
criterion. As for walls, one building element characterized 
by a hatching pattern, we assume some structural proper- 
ties and we search their features in the input graph. Walls' 
edges graph recognition can be used as a previous filter for 
the graph isomorphism process because their edges removal 
reduces search space meaningfully and thus it speeds up 
model matching. 

SLHT has been often used to understand linear images. 
Some characteristic configurations in the original image 
(parallel edges, cross points, etc.) can be easily detected in 
the Hough space. In [lo] SLHT is used to detect parallel 
straight lines in small scale images. In [13] cluster patterns 
are detected in Hough space to carry out an interpretation of 
3-D polyhedral scenes. [12] uses a SLHT-based method to 
match continuous closed smooth curves. In our case, we use 
a SLHT-based method to detect graph edges belonging to 
the textured areas filling walls. The detection starts by trans- 
forming each straight graph edge to a parameter space. The 
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peaks in this parameter space, detected by means of a clus- 
tering process, give information about the textured areas. 

Next you will see in section 2 a summary of graph match- 
ing process. Section 3 explains how to speed up the recogni- 
tion by a SLHT-based method that finds textured areas. Sec- 
tion 4 shows the synthetized image after parameter estima- 
tion. The last section is devoted to the conclusion. 

2. Model recognition by graph matching 

The input line drawing and the patterns to recognize are 
represented using an attributed graph. The graph nodes rep- 
resent the characteristic points (junctions or end points of 
lines). The attributes are their position, degree (number of 
lines joining in the node) and the angles between these lines. 
The graph edges represent the segments joining at charac- 
teristic points. The attributes are the lenght and, depending 
on whether the segment is adjusted by a straight line or a cir- 
cumference arc, the parameters that characterizetherespect- 
ive equation. We will represent our graphs, using a standar- 
ized notation, by G(V, E )  where V is a set of nodes and E 
is a set of edges. Fig. l a  shows an input image to be recog- 
nized and Fig. l b  shows its graph representation. Starting 
from this representation, matching is carried out using in- 
exact subgraph isomorphism techniques, that is, by finding 
the model graph representing the pattern to be recognized in 
terms of a subgraph of the input graph that approximates the 
input line drawing at best. The subgraph isomorphismprob- 
lem is solved using AC4. To allow inexact graph matching, 
the matching algorithm takes into account accuracy errors 
involved in hand drawn design. Figs. 2c, 2d are respect- 
ively the results of subgraph matching with the patterns of 
Figs. 2a, 2b. See [8] for futher details on isomorphism al- 
gorithm. 

Figure 1. (a) input image. (b) Graph. 

(c) (d) 

Figure 2. (a)(b) Some model graphs. (c) (d) 
Results after isomorphism. 

3. Hatching patterns detection 

Wall detection involves two purposes at the same time: 
recognising a building element which does not have a pat- 
tern graph and speed up the subgraph isomorphism process. 
Walls recognition will be carried out by detection of textured 
areas filled in by parallel straight lines even spaced. We 
make two additional assumptions for these regions: there 
are two directions allowed for the walls and these two direc- 
tions must be orthogonal. It is possible to allow more than 
two directions. In this case, since the detection of dominant 
directions involves a supervised learning process, the num- 
ber of directions should be an input parameter to the system. 

Classical SLHT transforms each image point (5, y) into a 
set of points (8, p)  in a parameter space that fulfill the equa- 
tion p = xcos0 + ysin8. Detection of peaks in the para- 
meter space constitutes a powerful method to detect straight 
lines in the input image. Several applications have been de- 
velopped from this idea. A complete survey can be found in 
[4, 61. With the purpose to detect textured regions forming 
walls we use the idea of SLHT in the following definition: 

Definition 3.1 Given an attributed graph G(V, E) ,  we 
define its Graph Based Hough Transform with parameters 8 
and p as a function GBHTe, : E -+ [O, 71.1 x R that, for each 
straight edge e E E with attribute values 8, and pe, trans- 
forms e into a point (e,, p e l  in the 6-p  parameter space. If 
the considered attributes of e are 8, and its module me, we 
define equivalently GBHTQ, in 0-m parameter space. 

Fig. 3 shows GBHTe, and GBHTe, in an ideal case. 
GBHTe, gives, for each wall, two peaks with the same 8 
and a difference in p equal to the wall’s width. GBHTQ, 
gives also a sequence of points even spaced with the same 
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GBHT,, GBHT, 

Figure 3. GBHTo, and GBHTo,. 

8. GBHTo, gives three peaks in the parameter space. Two 
of them have the same m and a difference of x / 2  in 8. These 
two peaks correspond to the orthogonaldominant directions. 
The third peak corresponds to the filling edges and the wall's 
width (L1 in the figure) is calculable starting from this peak 
as it can be seen bel ow. Both transformations allow to calcu- 
late the orthogonal dominant directions; the filling edges dir- 
ection and the wall's width. The inaccuracy of hand drawn 
design causes that graph edges with the same a priori attrib- 
ute values will be slightly different after vectorization. This 
fact provokes scatltered points in Hough space and an ad- 
ded difficulty in peak detection. For this reason we have 
used GBHTo, to extract the properties of the walls since 
the information required is concentrated only in three peaks. 
Then, the size of th'e input graph is reduced and the subgraph 
isomorphism against the models is done with the remainder 
of input graph. You can see below more details about the 
algorithm of document interpretation and reconstruction. 

3.1. Parameter computing 

A clustering process is applied over 0-m space, given by 
GBHTe,, with the: aim to detect the three peaks mentioned 
above. Two of these three peaks should have a difference 
of n/2 and correspond to orthogonal dominant directions. 
The third peak will be used to calculate the filling direction 
and the wall's width. The well-known k-means algorithm is 
used to classify the points of 8-m spacein three classes CV, 
CH and CF. The centres of these three classes will be taken 
as the three peaks shown in an ideal case in Fig. 3. Fig. 4a 
showsa3Dview ofthe8-mspaceafterGBHT6, ofFig. lb. 
Notice that, since the 0 axis is cyclic, the distanceused in the 
clustering process must be defined in terms of a cyclic dis- 
tance. Fig. 4b shows the three classes found with their cor- 
responding dominant directions &, 8~ and 8~ and the av- 

erage length m F  of filling edges. Let be (81, ml), (82, m2) 

"1 

? 

Figure 4. (a) 3D view of the 8-m space. (b) 
Clustering using k-means algorithm. 

and (83, m3) the three peaks detected in 8-m space. We can 
calculate the following information from these peaks: 

0 Dominant directions. el, O2 and O3 are the angles cor- 
responding to the three dominant directions of the in- 
put edges. The first step is to find, out of 01, Q2 and &, 
which two directions are orthogonal. Let denote @,I 
and 0,2 the angles corresponding to these two direc- 
tions. The third direction will be the filling direction 
and its angle will be denoted as O F .  

0 Graph rotation value. Let be V, and H ,  the min- 
imal rotation angle which must be applied to a direc- 
tion with angle Q to align it respectively with vertical 
and horizontal directions. The rotation Orot that must 
be applied to the input graph to align its dominant dir- 
ections with vertical and horizontal directions can be 
calculated as follows: 

If we assuine leol - I = x / 2  * 6, then the follow- 
ing equalities must also be satisfied: IVO,~ - He,, I = 6 
and IHoOt - Vo,, I = 6. After finding erot we can know 
which direction Oo1 or Oo2 corresponds to vertical dir- 
ection and which one corresponds to horizontal direc- 
tion. Let be 8v and 8 H  respectively the dominant dir- 
ections closest to vertical and horizontal directions. 

0 Directions variation. Let be AH, AV and AF the 
range of variation allowed for the dominant directions. 

Definition 3.2 Given an input graph GI(VI ,  E I ) ,  we 
define theset of vertical edges EV C EI as Ev = (e E 
EI, 0, = OV * AV}. Where Oe is the orientation of 
input edge e. Similarly we can define EH as the set of 
horizontal edges and EF as the set offilling edges. 
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Given a dominant direction 8i and its class Ci, AV, 
AH and OF are calculated as follows: 

Walls width. Let be ( O F ,  m ~ )  the class centre corres- 
ponding to filling edges. Given an ideal filling edge 
with length m F  and orientation O F  (see Fig. 5) ,  the 
width of the wall containing this edge will be a or b de- 
pending on whether it respectively joins vertical or ho- 
rizontal edges. These values can be estimated accord- 
ing to the following equations: 

(3) a = mF cos(8a - O F )  = m F  sin(8p - B v )  
b = m F  sin(8H - O F )  = m~ C O S ( 8 p  - 8v) (4) 

Figure 5. Average walls width calculation. 

A filling edge, after GBHTo,, is transformed into a 
point ( O F ,  mp) in the parameter space. In the estim- 
ation of average walls width we can not know which 
value a or b must be taken because both types of filling 
edges, vertical and horizontal, contribute in the accu- 
mulation point ( 8 ~ , m ~ ) .  We will estimate an inter- 
val [Wmin, W,,,] for walls width depending on a and 
b values and the standard deviation of filling edges 
length. The interval is calculated as follows: 

W,,, = (WLF + A F ) ~ U Z ( C O S ~ ,  sin@) 
W,in = ( m ~  - A,) min(cos@, sin@) 

( 5 )  
(6) 

where @ = OH - 6~ and AF is calculated within the 
filling edges class as follows: 

3.2. Connected component extraction 

After walls' parameter estimation, we filter the input 
graph to obtain Ev ,  EH and EF.  These edge sets are used 
to define three subgraph of input graph GI(VI ,  ET):  

Definition 3.3 We define Gv(Vv,  E v )  as the subgraph of 
vertical edges of GI.  E v  was defined in definition 3.2 and 
VV is defined as Vv = {ZI E VI,  3e = (211,212) E E v , ~  = 
ul or ZI = 212). In the same manner we define the subgraphs 
GH(VH, EH) and GF(VF, E F )  using horizontal edges and 
filling edges respectively. 

Gv and GH do not contain enough information to extract 
vertical and horizontal walls because other picture elements 
contain vertical and horizontal edges too. It is necessary an- 
other step which searchs for pairs of vertical or horizontal 
edges joined by a filling edge. According to this idea we 
define vertical and horizontal connected components as fol- 
lows: 

Definition 3.4 A vertical chain LVC ( VVC, E v c )  is 
defined as a connected subgraph of G v  such that its vertex 

such that for a l l j  = 2 . .  . I ,  

Definition 3.5 Given Gv(Vv,  E v ) ,  a vertical connected 
component is defined as a 3-tuple CV =< L1 , L F ,  LZ > 
where L1 and L2 are vertical chains and LF is a subgraph 
of GF whose edges join L1 and La. An horizontal connec- 
ted component is equivalently defined starting from GH.  

set VVC can be ordered in a sequence [wil, viz ,  .... vir] 
w i j )  E EVC. 

According to definition 3.5, we will denote Cv (CH)  as the 
set of vertical (horizontal) connected components extracted 
from Gv (GH).  Two vertical (horizontal) components shar- 
ing one of their vertical chains are merged in one vertical 
(horizontal) component. This merging process, shown if 
Fig. 6, is repeated until stability. 

........................................ .. 

- 
Kl 

G 

Figure 6. fertical connected components ex- 
traction and merging. 

Figs. 7a and 7b show vertical and horizontal connec- 
ted componets and their bounding boxes. These bound- 
ing boxes are a first approximation of walls. For each box 
we store the following features which characterize its cor- 
responding wall: width, filling edges orientation and fre- 
quence. Some of these attributes had already been calcu- 
lated, but now we adjust better them using only the edges 
inside the wall. 
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4. Document redrawing 

After wall recognition, a matching between the re- 
mainder of input graph and the set of model graphs is carried 
out. After finding the models in the input graph, we store 
only their position, scaling factor and orientation. These 
parameters are calciulated by means of an alignment between 
the matched input vertices and the model vertices. The doc- 
ument can be reconstructed with wall information obtained 
above and instantiating each model according to its attrib- 
utes (Fig. 7c show!; this result). Notice that some elements 
appear overlapped. The last step is a correction of element 
position to avoid overlapping (see Fig. 7d). 

Figure 7. (a)(b) Vertical and horizontal con- 
nected components and their respective 
bounding boxes. (c) Document reconstruc- 
tion. (d) Result after overlapping correction. 

5. Conclusion 

Hand drawn document understanding has been discussed 
and, particularly, the problem of hand drawn floor plan doc- 
uments analysis. An attributed graph has been proposed to 
represent the structural information of the document after 
its vectorization. Recognition has been stated in terms of 
an inexact subgraph isomorphism between a graph repres- 
enting the input document and a set of graphs representing 
some models to recognize. To speed up the matching and 
recognize some elements that doesn’t have a fixed pattern, a 
Hough based process has been introduced. This process car- 
ries out a recognition of walls, characterized by a filling tex- 
ture based on parallel straight lines even spaced. This step 
allows to reduce the size of the input graph and also to re- 
duce the computational load for the subgraph isomorphism. 
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