toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Ajian Liu; Zichang Tan; Jun Wan; Sergio Escalera; Guodong Guo; Stan Z. Li edit  url
doi  openurl
  Title CASIA-SURF CeFA: A Benchmark for Multi-modal Cross-Ethnicity Face Anti-Spoofing Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1178-1186  
  Keywords  
  Abstract The issue of ethnic bias has proven to affect the performance of face recognition in previous works, while it still remains to be vacant in face anti-spoofing. Therefore, in order to study the ethnic bias for face anti-spoofing, we introduce the largest CASIA-SURF Cross-ethnicity Face Anti-spoofing (CeFA) dataset, covering 3 ethnicities, 3 modalities, 1,607 subjects, and 2D plus 3D attack types. Five protocols are introduced to measure the affect under varied evaluation conditions, such as cross-ethnicity, unknown spoofs or both of them. As our knowledge, CASIA-SURF CeFA is the first dataset including explicit ethnic labels in current released datasets. Then, we propose a novel multi-modal fusion method as a strong baseline to alleviate the ethnic bias, which employs a partially shared fusion strategy to learn complementary information from multiple modalities. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability for other existing datasets, i.e., CASIA-SURF, OULU-NPU and SiW datasets. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2020?authuser=0.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LTW2021 Serial 3661  
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa edit   pdf
url  doi
openurl 
  Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 7196-7202  
  Keywords  
  Abstract This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ MAS2021a Serial 3583  
Permanent link to this record
 

 
Author Alejandro Cartas; Petia Radeva; Mariella Dimiccoli edit  url
openurl 
  Title Modeling long-term interactions to enhance action recognition Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 10351-10358  
  Keywords  
  Abstract In this paper, we propose a new approach to under-stand actions in egocentric videos that exploits the semantics of object interactions at both frame and temporal levels. At the frame level, we use a region-based approach that takes as input a primary region roughly corresponding to the user hands and a set of secondary regions potentially corresponding to the interacting objects and calculates the action score through a CNN formulation. This information is then fed to a Hierarchical LongShort-Term Memory Network (HLSTM) that captures temporal dependencies between actions within and across shots. Ablation studies thoroughly validate the proposed approach, showing in particular that both levels of the HLSTM architecture contribute to performance improvement. Furthermore, quantitative comparisons show that the proposed approach outperforms the state-of-the-art in terms of action recognition on standard benchmarks,without relying on motion information  
  Address January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ CRD2021 Serial 3626  
Permanent link to this record
 

 
Author Shiqi Yang; Kai Wang; Luis Herranz; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title On Implicit Attribute Localization for Generalized Zero-Shot Learning Type Journal Article
  Year 2021 Publication IEEE Signal Processing Letters Abbreviated Journal  
  Volume 28 Issue Pages 872 - 876  
  Keywords  
  Abstract Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their attribute-based descriptions. Since attributes are often related to specific parts of objects, many recent works focus on discovering discriminative regions. However, these methods usually require additional complex part detection modules or attention mechanisms. In this paper, 1) we show that common ZSL backbones (without explicit attention nor part detection) can implicitly localize attributes, yet this property is not exploited. 2) Exploiting it, we then propose SELAR, a simple method that further encourages attribute localization, surprisingly achieving very competitive generalized ZSL (GZSL) performance when compared with more complex state-of-the-art methods. Our findings provide useful insight for designing future GZSL methods, and SELAR provides an easy to implement yet strong baseline.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number YWH2021 Serial 3563  
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan C. Moure edit   pdf
url  doi
openurl 
  Title 3D Perception With Slanted Stixels on GPU Type Journal Article
  Year 2021 Publication IEEE Transactions on Parallel and Distributed Systems Abbreviated Journal TPDS  
  Volume 32 Issue 10 Pages 2434-2447  
  Keywords Daniel Hernandez-Juarez; Antonio Espinosa; David Vazquez; Antonio M. Lopez; Juan C. Moure  
  Abstract This article presents a GPU-accelerated software design of the recently proposed model of Slanted Stixels, which represents the geometric and semantic information of a scene in a compact and accurate way. We reformulate the measurement depth model to reduce the computational complexity of the algorithm, relying on the confidence of the depth estimation and the identification of invalid values to handle outliers. The proposed massively parallel scheme and data layout for the irregular computation pattern that corresponds to a Dynamic Programming paradigm is described and carefully analyzed in performance terms. Performance is shown to scale gracefully on current generation embedded GPUs. We assess the proposed methods in terms of semantic and geometric accuracy as well as run-time performance on three publicly available benchmark datasets. Our approach achieves real-time performance with high accuracy for 2048 × 1024 image sizes and 4 × 4 Stixel resolution on the low-power embedded GPU of an NVIDIA Tegra Xavier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ HEV2021 Serial 3561  
Permanent link to this record
 

 
Author Sudeep Katakol; Basem Elbarashy; Luis Herranz; Joost Van de Weijer; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Distributed Learning and Inference with Compressed Images Type Journal Article
  Year 2021 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 30 Issue Pages 3069 - 3083  
  Keywords  
  Abstract Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; ADAS; 600.120; 600.118 Approved no  
  Call Number Admin @ si @ KEH2021 Serial 3543  
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera;Oswald Lanz edit   pdf
url  doi
openurl 
  Title Learning to Recognize Actions on Objects in Egocentric Video with Attention Dictionaries Type Journal Article
  Year 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract We present EgoACO, a deep neural architecture for video action recognition that learns to pool action-context-object descriptors from frame level features by leveraging the verb-noun structure of action labels in egocentric video datasets. The core component of EgoACO is class activation pooling (CAP), a differentiable pooling operation that combines ideas from bilinear pooling for fine-grained recognition and from feature learning for discriminative localization. CAP uses self-attention with a dictionary of learnable weights to pool from the most relevant feature regions. Through CAP, EgoACO learns to decode object and scene context descriptors from video frame features. For temporal modeling in EgoACO, we design a recurrent version of class activation pooling termed Long Short-Term Attention (LSTA). LSTA extends convolutional gated LSTM with built-in spatial attention and a re-designed output gate. Action, object and context descriptors are fused by a multi-head prediction that accounts for the inter-dependencies between noun-verb-action structured labels in egocentric video datasets. EgoACO features built-in visual explanations, helping learning and interpretation. Results on the two largest egocentric action recognition datasets currently available, EPIC-KITCHENS and EGTEA, show that by explicitly decoding action-context-object descriptors, EgoACO achieves state-of-the-art recognition performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ SEL2021 Serial 3656  
Permanent link to this record
 

 
Author Alina Matei; Andreea Glavan; Petia Radeva; Estefania Talavera edit  url
doi  openurl
  Title Towards Eating Habits Discovery in Egocentric Photo-Streams Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue Pages 17495-17506  
  Keywords  
  Abstract Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioral pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ MGR2021 Serial 3637  
Permanent link to this record
 

 
Author Ricardo Dario Perez Principi; Cristina Palmero; Julio C. S. Jacques Junior; Sergio Escalera edit   pdf
url  doi
openurl 
  Title On the Effect of Observed Subject Biases in Apparent Personality Analysis from Audio-visual Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 12 Issue 3 Pages 607-621  
  Keywords  
  Abstract Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target, but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this work, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multi-modal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyse spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn First Impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions.  
  Address 1 July-Sept. 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ PPJ2019 Serial 3312  
Permanent link to this record
 

 
Author Kaustubh Kulkarni; Ciprian Corneanu; Ikechukwu Ofodile; Sergio Escalera; Xavier Baro; Sylwia Hyniewska; Juri Allik; Gholamreza Anbarjafari edit   pdf
url  openurl
  Title Automatic Recognition of Facial Displays of Unfelt Emotions Type Journal Article
  Year 2021 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 12 Issue 2 Pages 377 - 390  
  Keywords  
  Abstract Humans modify their facial expressions in order to communicate their internal states and sometimes to mislead observers regarding their true emotional states. Evidence in experimental psychology shows that discriminative facial responses are short and subtle. This suggests that such behavior would be easier to distinguish when captured in high resolution at an increased frame rate. We are proposing SASE-FE, the first dataset of facial expressions that are either congruent or incongruent with underlying emotion states. We show that overall the problem of recognizing whether facial movements are expressions of authentic emotions or not can be successfully addressed by learning spatio-temporal representations of the data. For this purpose, we propose a method that aggregates features along fiducial trajectories in a deeply learnt space. Performance of the proposed model shows that on average, it is easier to distinguish among genuine facial expressions of emotion than among unfelt facial expressions of emotion and that certain emotion pairs such as contempt and disgust are more difficult to distinguish than the rest. Furthermore, the proposed methodology improves state of the art results on CK+ and OULU-CASIA datasets for video emotion recognition, and achieves competitive results when classifying facial action units on BP4D datase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ KCO2021 Serial 3658  
Permanent link to this record
 

 
Author Fatemeh Noroozi; Ciprian Corneanu; Dorota Kamińska; Tomasz Sapiński; Sergio Escalera; Gholamreza Anbarjafari edit   pdf
url  openurl
  Title Survey on Emotional Body Gesture Recognition Type Journal Article
  Year 2021 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 12 Issue 2 Pages 505 - 523  
  Keywords  
  Abstract Automatic emotion recognition has become a trending research topic in the past decade. While works based on facial expressions or speech abound, recognizing affect from body gestures remains a less explored topic. We present a new comprehensive survey hoping to boost research in the field. We first introduce emotional body gestures as a component of what is commonly known as “body language” and comment general aspects as gender differences and culture dependence. We then define a complete framework for automatic emotional body gesture recognition. We introduce person detection and comment static and dynamic body pose estimation methods both in RGB and 3D. We then comment the recent literature related to representation learning and emotion recognition from images of emotionally expressive gestures. We also discuss multi-modal approaches that combine speech or face with body gestures for improved emotion recognition. While pre-processing methodologies (e.g. human detection and pose estimation) are nowadays mature technologies fully developed for robust large scale analysis, we show that for emotion recognition the quantity of labelled data is scarce, there is no agreement on clearly defined output spaces and the representations are shallow and largely based on naive geometrical representations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ NCK2021 Serial 3657  
Permanent link to this record
 

 
Author Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Fabio Ferreira; Isabelle Guyon; Sirui Hong; Frank Hutter; Rongrong Ji; Julio C. S. Jacques Junior; Ge Li; Marius Lindauer; Zhipeng Luo; Meysam Madadi; Thomas Nierhoff; Kangning Niu; Chunguang Pan; Danny Stoll; Sebastien Treguer; Jin Wang; Peng Wang; Chenglin Wu; Youcheng Xiong; Arber Zela; Yang Zhang edit  url
doi  openurl
  Title Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019 Type Journal Article
  Year 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 43 Issue 9 Pages 3108 - 3125  
  Keywords  
  Abstract This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LPX2021 Serial 3587  
Permanent link to this record
 

 
Author Xim Cerda-Company; Olivier Penacchio; Xavier Otazu edit   pdf
url  openurl
  Title Chromatic Induction in Migraine Type Journal
  Year 2021 Publication VISION Abbreviated Journal  
  Volume 5 Issue 3 Pages 37  
  Keywords migraine; vision; colour; colour perception; chromatic induction; psychophysics  
  Abstract The human visual system is not a colorimeter. The perceived colour of a region does not only depend on its colour spectrum, but also on the colour spectra and geometric arrangement of neighbouring regions, a phenomenon called chromatic induction. Chromatic induction is thought to be driven by lateral interactions: the activity of a central neuron is modified by stimuli outside its classical receptive field through excitatory–inhibitory mechanisms. As there is growing evidence of an excitation/inhibition imbalance in migraine, we compared chromatic induction in migraine and control groups. As hypothesised, we found a difference in the strength of induction between the two groups, with stronger induction effects in migraine. On the other hand, given the increased prevalence of visual phenomena in migraine with aura, we also hypothesised that the difference between migraine and control would be more important in migraine with aura than in migraine without aura. Our experiments did not support this hypothesis. Taken together, our results suggest a link between excitation/inhibition imbalance and increased induction effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; no proj Approved no  
  Call Number Admin @ si @ CPO2021 Serial 3589  
Permanent link to this record
 

 
Author Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez edit   pdf
url  openurl
  Title Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches Type Journal Article
  Year 2021 Publication Sensors Abbreviated Journal SENS  
  Volume 21 Issue 9 Pages 3185  
  Keywords co-training; multi-modality; vision-based object detection; ADAS; self-driving  
  Abstract Top-performing computer vision models are powered by convolutional neural networks (CNNs). Training an accurate CNN highly depends on both the raw sensor data and their associated ground truth (GT). Collecting such GT is usually done through human labeling, which is time-consuming and does not scale as we wish. This data-labeling bottleneck may be intensified due to domain shifts among image sensors, which could force per-sensor data labeling. In this paper, we focus on the use of co-training, a semi-supervised learning (SSL) method, for obtaining self-labeled object bounding boxes (BBs), i.e., the GT to train deep object detectors. In particular, we assess the goodness of multi-modal co-training by relying on two different views of an image, namely, appearance (RGB) and estimated depth (D). Moreover, we compare appearance-based single-modal co-training with multi-modal. Our results suggest that in a standard SSL setting (no domain shift, a few human-labeled data) and under virtual-to-real domain shift (many virtual-world labeled data, no human-labeled data) multi-modal co-training outperforms single-modal. In the latter case, by performing GAN-based domain translation both co-training modalities are on par, at least when using an off-the-shelf depth estimation model not specifically trained on the translated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ GVL2021 Serial 3562  
Permanent link to this record
 

 
Author Javier Marin; Sergio Escalera edit   pdf
url  openurl
  Title SSSGAN: Satellite Style and Structure Generative Adversarial Networks Type Journal Article
  Year 2021 Publication Remote Sensing Abbreviated Journal  
  Volume 13 Issue 19 Pages 3984  
  Keywords  
  Abstract This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MaE2021 Serial 3651  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: