toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Francesco Pelosin; Saurav Jha; Andrea Torsello; Bogdan Raducanu; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Towards exemplar-free continual learning in vision transformers: an account of attention, functional and weight regularization Type Conference Article
  Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Learning systems; Weight measurement; Image recognition; Surgery; Benchmark testing; Transformers; Stability analysis  
  Abstract In this paper, we investigate the continual learning of Vision Transformers (ViT) for the challenging exemplar-free scenario, with special focus on how to efficiently distill the knowledge of its crucial self-attention mechanism (SAM). Our work takes an initial step towards a surgical investigation of SAM for designing coherent continual learning methods in ViTs. We first carry out an evaluation of established continual learning regularization techniques. We then examine the effect of regularization when applied to two key enablers of SAM: (a) the contextualized embedding layers, for their ability to capture well-scaled representations with respect to the values, and (b) the prescaled attention maps, for carrying value-independent global contextual information. We depict the perks of each distilling strategy on two image recognition benchmarks (CIFAR100 and ImageNet-32) – while (a) leads to a better overall accuracy, (b) helps enhance the rigidity by maintaining competitive performances. Furthermore, we identify the limitation imposed by the symmetric nature of regularization losses. To alleviate this, we propose an asymmetric variant and apply it to the pooled output distillation (POD) loss adapted for ViTs. Our experiments confirm that introducing asymmetry to POD boosts its plasticity while retaining stability across (a) and (b). Moreover, we acknowledge low forgetting measures for all the compared methods, indicating that ViTs might be naturally inclined continual learners. 1  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ PJT2022 Serial 3784  
Permanent link to this record
 

 
Author Spencer Low; Oliver Nina; Angel Sappa; Erik Blasch; Nathan Inkawhich edit   pdf
url  doi
openurl 
  Title Multi-Modal Aerial View Object Classification Challenge Results – PBVS 2022 Type Conference Article
  Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages 350-358  
  Keywords  
  Abstract This paper details the results and main findings of the second iteration of the Multi-modal Aerial View Object Classification (MAVOC) challenge. The primary goal of both MAVOC challenges is to inspire research into methods for building recognition models that utilize both synthetic aperture radar (SAR) and electro-optical (EO) imagery. Teams are encouraged to develop multi-modal approaches that incorporate complementary information from both domains. While the 2021 challenge showed a proof of concept that both modalities could be used together, the 2022 challenge focuses on the detailed multi-modal methods. The 2022 challenge uses the same UNIfied Coincident Optical and Radar for recognitioN (UNICORN) dataset and competition format that was used in 2021. Specifically, the challenge focuses on two tasks, (1) SAR classification and (2) SAR + EO classification. The bulk of this document is dedicated to discussing the top performing methods and describing their performance on our blind test set. Notably, all of the top ten teams outperform a Resnet-18 baseline. For SAR classification, the top team showed a 129% improvement over baseline and an 8% average improvement from the 2021 winner. The top team for SAR + EO classification shows a 165% improvement with a 32% average improvement over 2021.  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ LNS2022 Serial 3768  
Permanent link to this record
 

 
Author Saiping Zhang; Luis Herranz; Marta Mrak; Marc Gorriz Blanch; Shuai Wan; Fuzheng Yang edit   pdf
url  doi
openurl 
  Title DCNGAN: A Deformable Convolution-Based GAN with QP Adaptation for Perceptual Quality Enhancement of Compressed Video Type Conference Article
  Year 2022 Publication 47th International Conference on Acoustics, Speech, and Signal Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.  
  Address Virtual; May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICASSP  
  Notes MACO; 600.161; 601.379 Approved no  
  Call Number Admin @ si @ ZHM2022a Serial 3765  
Permanent link to this record
 

 
Author Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1391-1400  
  Keywords Measurement; Training; Integrated circuits; Annotations; Semantics; Training data; Semisupervised learning  
  Abstract The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a large improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. The code for our new metric can be found at github. com/furkanbiten/ncsmetric and the model implementation at github. com/andrespmd/semanticadaptive_margin.  
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155; 302.105; Approved no  
  Call Number Admin @ si @ BMG2022 Serial 3663  
Permanent link to this record
 

 
Author Minesh Mathew; Viraj Bagal; Ruben Tito; Dimosthenis Karatzas; Ernest Valveny; C.V. Jawahar edit   pdf
url  doi
openurl 
  Title InfographicVQA Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1697-1706  
  Keywords Document Analysis Datasets; Evaluation and Comparison of Vision Algorithms; Vision and Languages  
  Abstract Infographics communicate information using a combination of textual, graphical and visual elements. This work explores the automatic understanding of infographic images by using a Visual Question Answering technique. To this end, we present InfographicVQA, a new dataset comprising a diverse collection of infographics and question-answer annotations. The questions require methods that jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with an emphasis on questions that require elementary reasoning and basic arithmetic skills. For VQA on the dataset, we evaluate two Transformer-based strong baselines. Both the baselines yield unsatisfactory results compared to near perfect human performance on the dataset. The results suggest that VQA on infographics--images that are designed to communicate information quickly and clearly to human brain--is ideal for benchmarking machine understanding of complex document images. The dataset is available for download at docvqa. org  
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155 Approved no  
  Call Number MBT2022 Serial 3625  
Permanent link to this record
 

 
Author Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund edit   pdf
url  doi
openurl 
  Title Multi-Task Classification of Sewer Pipe Defects and Properties Using a Cross-Task Graph Neural Network Decoder Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2806-2817  
  Keywords Vision Systems; Applications Multi-Task Classification  
  Abstract The sewerage infrastructure is one of the most important and expensive infrastructures in modern society. In order to efficiently manage the sewerage infrastructure, automated sewer inspection has to be utilized. However, while sewer
defect classification has been investigated for decades, little attention has been given to classifying sewer pipe properties such as water level, pipe material, and pipe shape, which are needed to evaluate the level of sewer pipe deterioration.
In this work we classify sewer pipe defects and properties concurrently and present a novel decoder-focused multi-task classification architecture Cross-Task Graph Neural Network (CT-GNN), which refines the disjointed per-task predictions using cross-task information. The CT-GNN architecture extends the traditional disjointed task-heads decoder, by utilizing a cross-task graph and unique class node embeddings. The cross-task graph can either be determined a priori based on the conditional probability between the task classes or determined dynamically using self-attention.
CT-GNN can be added to any backbone and trained end-toend at a small increase in the parameter count. We achieve state-of-the-art performance on all four classification tasks in the Sewer-ML dataset, improving defect classification and
water level classification by 5.3 and 8.0 percentage points, respectively. We also outperform the single task methods as well as other multi-task classification approaches while introducing 50 times fewer parameters than previous modelfocused approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ BME2022 Serial 3638  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Ali Furkan Biten; Sounak Dey; Alicia Fornes; Yousri Kessentini; Lluis Gomez; Dimosthenis Karatzas; Josep Llados edit   pdf
url  doi
openurl 
  Title One-shot Compositional Data Generation for Low Resource Handwritten Text Recognition Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords Document Analysis  
  Abstract Low resource Handwritten Text Recognition (HTR) is a hard problem due to the scarce annotated data and the very limited linguistic information (dictionaries and language models). This appears, for example, in the case of historical ciphered manuscripts, which are usually written with invented alphabets to hide the content. Thus, in this paper we address this problem through a data generation technique based on Bayesian Program Learning (BPL). Contrary to traditional generation approaches, which require a huge amount of annotated images, our method is able to generate human-like handwriting using only one sample of each symbol from the desired alphabet. After generating symbols, we create synthetic lines to train state-of-the-art HTR architectures in a segmentation free fashion. Quantitative and qualitative analyses were carried out and confirm the effectiveness of the proposed method, achieving competitive results compared to the usage of real annotated data.  
  Address Virtual; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBD2022 Serial 3615  
Permanent link to this record
 

 
Author Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1381-1390  
  Keywords Measurement; Training; Visualization; Analytical models; Computer vision; Computational modeling; Training data  
  Abstract Explaining an image with missing or non-existent objects is known as object bias (hallucination) in image captioning. This behaviour is quite common in the state-of-the-art captioning models which is not desirable by humans. To decrease the object hallucination in captioning, we propose three simple yet efficient training augmentation method for sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the proposed methods can significantly diminish our models’ object bias on hallucination metrics. Moreover, we experimentally demonstrate that our methods decrease the dependency on the visual features. All of our code, configuration files and model weights are available online.
 
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155; 302.105 Approved no  
  Call Number Admin @ si @ BGK2022 Serial 3662  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Y.Kessentini edit   pdf
url  doi
openurl 
  Title DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 44 Issue 3 Pages 1180-1191  
  Keywords  
  Abstract Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems.  
  Address 1 March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.230; 600.121; 600.140 Approved no  
  Call Number Admin @ si @ SoK2022 Serial 3454  
Permanent link to this record
 

 
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li edit   pdf
url  doi
openurl 
  Title ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
  Year 2022 Publication IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN  
  Volume 52 Issue 5 Pages 3422-3433  
  Keywords  
  Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.  
  Address May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ WLW2022 Serial 3522  
Permanent link to this record
 

 
Author Ahmed M. A. Salih; Ilaria Boscolo Galazzo; Federica Cruciani; Lorenza Brusini; Petia Radeva edit  url
doi  openurl
  Title Investigating Explainable Artificial Intelligence for MRI-based Classification of Dementia: a New Stability Criterion for Explainable Methods Type Conference Article
  Year 2022 Publication 29th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords Image processing; Stability criteria; Machine learning; Robustness; Alzheimer's disease; Monitoring  
  Abstract Individuals diagnosed with Mild Cognitive Impairment (MCI) have shown an increased risk of developing Alzheimer’s Disease (AD). As such, early identification of dementia represents a key prognostic element, though hampered by complex disease patterns. Increasing efforts have focused on Machine Learning (ML) to build accurate classification models relying on a multitude of clinical/imaging variables. However, ML itself does not provide sensible explanations related to the model mechanism and feature contribution. Explainable Artificial Intelligence (XAI) represents the enabling technology in this framework, allowing to understand ML outcomes and derive human-understandable explanations. In this study, we aimed at exploring ML combined with MRI-based features and XAI to solve this classification problem and interpret the outcome. In particular, we propose a new method to assess the robustness of feature rankings provided by XAI methods, especially when multicollinearity exists. Our findings indicate that our method was able to disentangle the list of the informative features underlying dementia, with important implications for aiding personalized monitoring plans.  
  Address Bordeaux; France; October 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes MILAB Approved no  
  Call Number Admin @ si @ SBC2022 Serial 3789  
Permanent link to this record
 

 
Author Vishwesh Pillai; Pranav Mehar; Manisha Das; Deep Gupta; Petia Radeva edit  url
doi  openurl
  Title Integrated Hierarchical and Flat Classifiers for Food Image Classification using Epistemic Uncertainty Type Conference Article
  Year 2022 Publication IEEE International Conference on Signal Processing and Communications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The problem of food image recognition is an essential one in today’s context because health conditions such as diabetes, obesity, and heart disease require constant monitoring of a person’s diet. To automate this process, several models are available to recognize food images. Due to a considerable number of unique food dishes and various cuisines, a traditional flat classifier ceases to perform well. To address this issue, prediction schemes consisting of both flat and hierarchical classifiers, with the analysis of epistemic uncertainty are used to switch between the classifiers. However, the accuracy of the predictions made using epistemic uncertainty data remains considerably low. Therefore, this paper presents a prediction scheme using three different threshold criteria that helps to increase the accuracy of epistemic uncertainty predictions. The performance of the proposed method is demonstrated using several experiments performed on the MAFood-121 dataset. The experimental results validate the proposal performance and show that the proposed threshold criteria help to increase the overall accuracy of the predictions by correctly classifying the uncertainty distribution of the samples.  
  Address Bangalore; India; July 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SPCOM  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ PMD2022 Serial 3796  
Permanent link to this record
 

 
Author Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier edit   pdf
url  doi
openurl 
  Title Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 2 Pages 894-911  
  Keywords  
  Abstract Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.  
  Address 1 April-June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ EKS2022 Serial 3406  
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Angel Sappa; Dario Carpio; Rafael E. Rivadeneira; Angel Sanchez edit   pdf
url  openurl
  Title Review on Common Techniques for Urban Environment Video Analytics Type Conference Article
  Year 2022 Publication Anais do III Workshop Brasileiro de Cidades Inteligentes Abbreviated Journal  
  Volume Issue Pages 107-118  
  Keywords Video Analytics; Review; Urban Environments; Smart Cities  
  Abstract This work compiles the different computer vision-based approaches
from the state-of-the-art intended for video analytics in urban environments.
The manuscript groups the different approaches according to the typical modules present in video analysis, including image preprocessing, object detection,
classification, and tracking. This proposed pipeline serves as a basic guide to
representing these most representative approaches in this topic of video analysis
that will be addressed in this work. Furthermore, the manuscript is not intended
to be an exhaustive review of the most advanced approaches, but only a list of
common techniques proposed to address recurring problems in this field.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WBCI  
  Notes MSIAU; 601.349 Approved no  
  Call Number Admin @ si @ VSS2022 Serial 3773  
Permanent link to this record
 

 
Author Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit   pdf
url  openurl
  Title Lost in Transcription of Graphic Signs in Ciphers Type Conference Article
  Year 2022 Publication International Conference on Historical Cryptology (HistoCrypt 2022) Abbreviated Journal  
  Volume Issue Pages 153-158  
  Keywords transcription of ciphers; hand-written text recognition of symbols; graphic signs  
  Abstract Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings.  
  Address Amsterdam, Netherlands, June 20-22, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HystoCrypt  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ MBS2022 Serial 3731  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: