Fahad Shahbaz Khan, Joost Van de Weijer, Muhammad Anwer Rao, Michael Felsberg, & Carlo Gatta. (2014). Semantic Pyramids for Gender and Action Recognition. TIP - IEEE Transactions on Image Processing, 23(8), 3633–3645.
Abstract: Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.
|
|
Shida Beigpour, Christian Riess, Joost Van de Weijer, & Elli Angelopoulou. (2014). Multi-Illuminant Estimation with Conditional Random Fields. TIP - IEEE Transactions on Image Processing, 23(1), 83–95.
Abstract: Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach.
Keywords: color constancy; CRF; multi-illuminant
|
|
David Geronimo, Joan Serrat, Antonio Lopez, & Ramon Baldrich. (2013). Traffic sign recognition for computer vision project-based learning. T-EDUC - IEEE Transactions on Education, 56(3), 364–371.
Abstract: This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.
Keywords: traffic signs
|
|
Mikhail Mozerov, Fei Yang, & Joost Van de Weijer. (2019). Sparse Data Interpolation Using the Geodesic Distance Affinity Space. SPL - IEEE Signal Processing Letters, 26(6), 943–947.
Abstract: In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.
|
|
Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio Lopez, & Andrew Bagdanov. (2018). Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting. In 24th International Conference on Pattern Recognition (pp. 2262–2268).
Abstract: In this paper we propose an approach to avoiding catastrophic forgetting in sequential task learning scenarios. Our technique is based on a network reparameterization that approximately diagonalizes the Fisher Information Matrix of the network parameters. This reparameterization takes the form of
a factorized rotation of parameter space which, when used in conjunction with Elastic Weight Consolidation (which assumes a diagonal Fisher Information Matrix), leads to significantly better performance on lifelong learning of sequential tasks. Experimental results on the MNIST, CIFAR-100, CUB-200 and
Stanford-40 datasets demonstrate that we significantly improve the results of standard elastic weight consolidation, and that we obtain competitive results when compared to the state-of-the-art in lifelong learning without forgetting.
|
|
Lu Yu, Yongmei Cheng, & Joost Van de Weijer. (2018). Weakly Supervised Domain-Specific Color Naming Based on Attention. In 24th International Conference on Pattern Recognition (pp. 3019–3024).
Abstract: The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, Andrew Bagdanov, & Michael Felsberg. (2014). Scale Coding Bag-of-Words for Action Recognition. In 22nd International Conference on Pattern Recognition (pp. 1514–1519).
Abstract: Recognizing human actions in still images is a challenging problem in computer vision due to significant amount of scale, illumination and pose variation. Given the bounding box of a person both at training and test time, the task is to classify the action associated with each bounding box in an image.
Most state-of-the-art methods use the bag-of-words paradigm for action recognition. The bag-of-words framework employing a dense multi-scale grid sampling strategy is the de facto standard for feature detection. This results in a scale invariant image representation where all the features at multiple-scales are binned in a single histogram. We argue that such a scale invariant
strategy is sub-optimal since it ignores the multi-scale information
available with each bounding box of a person.
This paper investigates alternative approaches to scale coding for action recognition in still images. We encode multi-scale information explicitly in three different histograms for small, medium and large scale visual-words. Our first approach exploits multi-scale information with respect to the image size. In our second approach, we encode multi-scale information relative to the size of the bounding box of a person instance. In each approach, the multi-scale histograms are then concatenated into a single representation for action classification. We validate our approaches on the Willow dataset which contains seven action categories: interacting with computer, photography, playing music,
riding bike, riding horse, running and walking. Our results clearly suggest that the proposed scale coding approaches outperform the conventional scale invariant technique. Moreover, we show that our approach obtains promising results compared to more complex state-of-the-art methods.
|
|
David Augusto Rojas, Fahad Shahbaz Khan, & Joost Van de Weijer. (2010). The Impact of Color on Bag-of-Words based Object Recognition. In 20th International Conference on Pattern Recognition (1549–1553).
Abstract: In recent years several works have aimed at exploiting color information in order to improve the bag-of-words based image representation. There are two stages in which color information can be applied in the bag-of-words framework. Firstly, feature detection can be improved by choosing highly informative color-based regions. Secondly, feature description, typically focusing on shape, can be improved with a color description of the local patches. Although both approaches have been shown to improve results the combined merits have not yet been analyzed. Therefore, in this paper we investigate the combined contribution of color to both the feature detection and extraction stages. Experiments performed on two challenging data sets, namely Flower and Pascal VOC 2009; clearly demonstrate that incorporating color in both feature detection and extraction significantly improves the overall performance.
|
|
Susana Alvarez, Anna Salvatella, Maria Vanrell, & Xavier Otazu. (2010). Perceptual color texture codebooks for retrieving in highly diverse texture datasets. In 20th International Conference on Pattern Recognition (866–869).
Abstract: Color and texture are visual cues of different nature, their integration in a useful visual descriptor is not an obvious step. One way to combine both features is to compute texture descriptors independently on each color channel. A second way is integrate the features at a descriptor level, in this case arises the problem of normalizing both cues. A significant progress in the last years in object recognition has provided the bag-of-words framework that again deals with the problem of feature combination through the definition of vocabularies of visual words. Inspired in this framework, here we present perceptual textons that will allow to fuse color and texture at the level of p-blobs, which is our feature detection step. Feature representation is based on two uniform spaces representing the attributes of the p-blobs. The low-dimensionality of these text on spaces will allow to bypass the usual problems of previous approaches. Firstly, no need for normalization between cues; and secondly, vocabularies are directly obtained from the perceptual properties of text on spaces without any learning step. Our proposal improve current state-of-art of color-texture descriptors in an image retrieval experiment over a highly diverse texture dataset from Corel.
|
|
Jaime Moreno, & Xavier Otazu. (2011). Image compression algorithm based on Hilbert scanning of embedded quadTrees: an introduction of the Hi-SET coder. In IEEE International Conference on Multimedia and Expo (pp. 1–6).
Abstract: In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels. The implementation of the proposed coder is developed for gray-scale and color image compression. Hi-SET compressed images are, on average, 6.20dB better than the ones obtained by other compression techniques based on the Hilbert scanning. Moreover, Hi-SET improves the image quality in 1.39dB and 1.00dB in gray-scale and color compression, respectively, when compared with JPEG2000 coder.
|
|
Marco Buzzelli, Joost Van de Weijer, & Raimondo Schettini. (2018). Learning Illuminant Estimation from Object Recognition. In 25th International Conference on Image Processing (pp. 3234–3238).
Abstract: In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Keywords: Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
|
|
Rahat Khan, Joost Van de Weijer, Dimosthenis Karatzas, & Damien Muselet. (2013). Towards multispectral data acquisition with hand-held devices. In 20th IEEE International Conference on Image Processing (pp. 2053–2057).
Abstract: We propose a method to acquire multispectral data with handheld devices with front-mounted RGB cameras. We propose to use the display of the device as an illuminant while the camera captures images illuminated by the red, green and
blue primaries of the display. Three illuminants and three response functions of the camera lead to nine response values which are used for reflectance estimation. Results are promising and show that the accuracy of the spectral reconstruction improves in the range from 30-40% over the spectral
reconstruction based on a single illuminant. Furthermore, we propose to compute sensor-illuminant aware linear basis by discarding the part of the reflectances that falls in the sensorilluminant null-space. We show experimentally that optimizing reflectance estimation on these new basis functions decreases
the RMSE significantly over basis functions that are independent to sensor-illuminant. We conclude that, multispectral data acquisition is potentially possible with consumer hand-held devices such as tablets, mobiles, and laptops, opening up applications which are currently considered to be unrealistic.
Keywords: Multispectral; mobile devices; color measurements
|
|
Shida Beigpour, Marc Serra, Joost Van de Weijer, Robert Benavente, Maria Vanrell, Olivier Penacchio, et al. (2013). Intrinsic Image Evaluation On Synthetic Complex Scenes. In 20th IEEE International Conference on Image Processing (pp. 285–289).
Abstract: Scene decomposition into its illuminant, shading, and reflectance intrinsic images is an essential step for scene understanding. Collecting intrinsic image groundtruth data is a laborious task. The assumptions on which the ground-truth
procedures are based limit their application to simple scenes with a single object taken in the absence of indirect lighting and interreflections. We investigate synthetic data for intrinsic image research since the extraction of ground truth is straightforward, and it allows for scenes in more realistic situations (e.g, multiple illuminants and interreflections). With this dataset we aim to motivate researchers to further explore intrinsic image decomposition in complex scenes.
|
|
Alicia Fornes, Xavier Otazu, & Josep Llados. (2013). Show through cancellation and image enhancement by multiresolution contrast processing. In 12th International Conference on Document Analysis and Recognition (pp. 200–204).
Abstract: Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie, & Jean-Marc Ogier. (2013). An active contour model for speech balloon detection in comics. In 12th International Conference on Document Analysis and Recognition (pp. 1240–1244).
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.
|
|
Aitor Alvarez-Gila, Joost Van de Weijer, & Estibaliz Garrote. (2017). Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB. In 1st International Workshop on Physics Based Vision meets Deep Learning.
Abstract: Hyperspectral signal reconstruction aims at recovering the original spectral input that produced a certain trichromatic (RGB) response from a capturing device or observer.
Given the heavily underconstrained, non-linear nature of the problem, traditional techniques leverage different statistical properties of the spectral signal in order to build informative priors from real world object reflectances for constructing such RGB to spectral signal mapping. However,
most of them treat each sample independently, and thus do not benefit from the contextual information that the spatial dimensions can provide. We pose hyperspectral natural image reconstruction as an image to image mapping learning problem, and apply a conditional generative adversarial framework to help capture spatial semantics. This is the first time Convolutional Neural Networks -and, particularly, Generative Adversarial Networks- are used to solve this task. Quantitative evaluation shows a Root Mean Squared Error (RMSE) drop of 44:7% and a Relative RMSE drop of 47:0% on the ICVL natural hyperspectral image dataset.
|
|
Ivet Rafegas, & Maria Vanrell. (2017). Color representation in CNNs: parallelisms with biological vision. In ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision.
Abstract: Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
|
|
Yaxing Wang, Hector Laria Mantecon, Joost Van de Weijer, Laura Lopez-Fuentes, & Bogdan Raducanu. (2021). TransferI2I: Transfer Learning for Image-to-Image Translation from Small Datasets. In 19th IEEE International Conference on Computer Vision (pp. 13990–13999).
Abstract: Image-to-image (I2I) translation has matured in recent years and is able to generate high-quality realistic images. However, despite current success, it still faces important challenges when applied to small domains. Existing methods use transfer learning for I2I translation, but they still require the learning of millions of parameters from scratch. This drawback severely limits its application on small domains. In this paper, we propose a new transfer learning for I2I translation (TransferI2I). We decouple our learning process into the image generation step and the I2I translation step. In the first step we propose two novel techniques: source-target initialization and self-initialization of the adaptor layer. The former finetunes the pretrained generative model (e.g., StyleGAN) on source and target data. The latter allows to initialize all non-pretrained network parameters without the need of any data. These techniques provide a better initialization for the I2I translation step. In addition, we introduce an auxiliary GAN that further facilitates the training of deep I2I systems even from small datasets. In extensive experiments on three datasets, (Animal faces, Birds, and Foods), we show that we outperform existing methods and that mFID improves on several datasets with over 25 points.
|
|