toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Alicia Fornes; Bart Lamiroy edit  url
isbn  openurl
  Title Graphics Recognition, Current Trends and Evolutions Type Book Whole
  Year 2018 Publication Graphics Recognition, Current Trends and Evolutions Abbreviated Journal  
  Volume 11009 Issue Pages  
  Keywords  
  Abstract This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Workshop on Graphics Recognition, GREC 2017, held in Kyoto, Japan, in November 2017.
The 10 revised full papers presented were carefully reviewed and selected from 14 initial submissions. They contain both classical and emerging topics of graphics rcognition, namely analysis and detection of diagrams, search and classification, optical music recognition, interpretation of engineering drawings and maps.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-02283-9 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ FoL2018 Serial 3171  
Permanent link to this record
 

 
Author Pichao Wang; Wanqing Li; Philip Ogunbona; Jun Wan; Sergio Escalera edit   pdf
url  openurl
  Title RGB-D-based Human Motion Recognition with Deep Learning: A Survey Type Journal Article
  Year 2018 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 171 Issue Pages 118-139  
  Keywords Human motion recognition; RGB-D data; Deep learning; Survey  
  Abstract Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ WLO2018 Serial 3123  
Permanent link to this record
 

 
Author Mariella Dimiccoli; Cathal Gurrin; David J. Crandall; Xavier Giro; Petia Radeva edit  url
openurl 
  Title Introduction to the special issue: Egocentric Vision and Lifelogging Type Journal Article
  Year 2018 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR  
  Volume 55 Issue Pages 352-353  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ DGC2018 Serial 3187  
Permanent link to this record
 

 
Author F.Negin; Pau Rodriguez; M.Koperski; A.Kerboua; Jordi Gonzalez; J.Bourgeois; E.Chapoulie; P.Robert; F.Bremond edit  url
openurl 
  Title PRAXIS: Towards automatic cognitive assessment using gesture recognition Type Journal Article
  Year 2018 Publication Expert Systems with Applications Abbreviated Journal ESWA  
  Volume 106 Issue Pages 21-35  
  Keywords  
  Abstract Praxis test is a gesture-based diagnostic test which has been accepted as diagnostically indicative of cortical pathologies such as Alzheimer’s disease. Despite being simple, this test is oftentimes skipped by the clinicians. In this paper, we propose a novel framework to investigate the potential of static and dynamic upper-body gestures based on the Praxis test and their potential in a medical framework to automatize the test procedures for computer-assisted cognitive assessment of older adults.

In order to carry out gesture recognition as well as correctness assessment of the performances we have recollected a novel challenging RGB-D gesture video dataset recorded by Kinect v2, which contains 29 specific gestures suggested by clinicians and recorded from both experts and patients performing the gesture set. Moreover, we propose a framework to learn the dynamics of upper-body gestures, considering the videos as sequences of short-term clips of gestures. Our approach first uses body part detection to extract image patches surrounding the hands and then, by means of a fine-tuned convolutional neural network (CNN) model, it learns deep hand features which are then linked to a long short-term memory to capture the temporal dependencies between video frames.
We report the results of four developed methods using different modalities. The experiments show effectiveness of our deep learning based approach in gesture recognition and performance assessment tasks. Satisfaction of clinicians from the assessment reports indicates the impact of framework corresponding to the diagnosis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ NRK2018 Serial 3669  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title An overview of incremental feature extraction methods based on linear subspaces Type Journal Article
  Year 2018 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 145 Issue Pages 219-235  
  Keywords  
  Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-7051 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DFH2018 Serial 3090  
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell edit   pdf
url  doi
openurl 
  Title Color encoding in biologically-inspired convolutional neural networks Type Journal Article
  Year 2018 Publication Vision Research Abbreviated Journal VR  
  Volume 151 Issue Pages 7-17  
  Keywords Color coding; Computer vision; Deep learning; Convolutional neural networks  
  Abstract Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC; 600.051; 600.087 Approved no  
  Call Number Admin @ si @RaV2018 Serial 3114  
Permanent link to this record
 

 
Author Xim Cerda-Company; C. Alejandro Parraga; Xavier Otazu edit   pdf
url  doi
openurl 
  Title Which tone-mapping operator is the best? A comparative study of perceptual quality Type Journal Article
  Year 2018 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 35 Issue 4 Pages 626-638  
  Keywords  
  Abstract Tone-mapping operators (TMO) are designed to generate perceptually similar low-dynamic range images from high-dynamic range ones. We studied the performance of fifteen TMOs in two psychophysical experiments where observers compared the digitally-generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment and the setups were
designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity-levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according
to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the
question of which TMO is the best, KimKautz [1] and Krawczyk [2] obtained the better results across the different experiments. We conclude that a more thorough and standardized evaluation criteria is needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ CPO2018 Serial 3088  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title BronchoX: bronchoscopy exploration software for biopsy intervention planning Type Journal
  Year 2018 Publication Healthcare Technology Letters Abbreviated Journal HTL  
  Volume 5 Issue 5 Pages 177–182  
  Keywords  
  Abstract Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.  
  Address  
  Corporate Author rank (SJR) Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 600.075; 601.323; 601.337; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018a Serial 3132  
Permanent link to this record
 

 
Author Gholamreza Anbarjafari; Sergio Escalera edit  url
isbn  openurl
  Title Human-Robot Interaction: Theory and Application Type Book Whole
  Year 2018 Publication Human-Robot Interaction: Theory and Application Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-78923-316-2 Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ AnE2018 Serial 3216  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume 11455 Issue Pages 71-82  
  Keywords  
  Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
 

 
Author Santi Puch; Irina Sanchez; Aura Hernandez-Sabate; Gemma Piella; Vesna Prckovska edit   pdf
url  openurl
  Title Global Planar Convolutions for Improved Context Aggregation in Brain Tumor Segmentation Type Conference Article
  Year 2018 Publication International MICCAI Brainlesion Workshop Abbreviated Journal  
  Volume 11384 Issue Pages 393-405  
  Keywords Brain tumors; 3D fully-convolutional CNN; Magnetic resonance imaging; Global planar convolution  
  Abstract In this work, we introduce the Global Planar Convolution module as a building-block for fully-convolutional networks that aggregates global information and, therefore, enhances the context perception capabilities of segmentation networks in the context of brain tumor segmentation. We implement two baseline architectures (3D UNet and a residual version of 3D UNet, ResUNet) and present a novel architecture based on these two architectures, ContextNet, that includes the proposed Global Planar Convolution module. We show that the addition of such module eliminates the need of building networks with several representation levels, which tend to be over-parametrized and to showcase slow rates of convergence. Furthermore, we provide a visual demonstration of the behavior of GPC modules via visualization of intermediate representations. We finally participate in the 2018 edition of the BraTS challenge with our best performing models, that are based on ContextNet, and report the evaluation scores on the validation and the test sets of the challenge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ PSH2018 Serial 3251  
Permanent link to this record
 

 
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Learning from# Barcelona Instagram data what Locals and Tourists post about its Neighbourhoods Type Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 11134 Issue Pages 530-544  
  Keywords  
  Abstract Massive tourism is becoming a big problem for some cities, such as Barcelona, due to its concentration in some neighborhoods. In this work we gather Instagram data related to Barcelona consisting on images-captions pairs and, using the text as a supervisory signal, we learn relations between images, words and neighborhoods. Our goal is to learn which visual elements appear in photos when people is posting about each neighborhood. We perform a language separate treatment of the data and show that it can be extrapolated to a tourists and locals separate analysis, and that tourism is reflected in Social Media at a neighborhood level. The presented pipeline allows analyzing the differences between the images that tourists and locals associate to the different neighborhoods. The proposed method, which can be extended to other cities or subjects, proves that Instagram data can be used to train multi-modal (image and text) machine learning models that are useful to analyze publications about a city at a neighborhood level. We publish the collected dataset, InstaBarcelona and the code used in the analysis.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ GGG2018b Serial 3176  
Permanent link to this record
 

 
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Learning to Learn from Web Data through Deep Semantic Embeddings Type Conference Article
  Year 2018 Publication 15th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 11134 Issue Pages 514-529  
  Keywords  
  Abstract In this paper we propose to learn a multimodal image and text embedding from Web and Social Media data, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the pipeline can learn from images with associated text without supervision and perform a thourough analysis of five different text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text based image retrieval task, and we clearly outperform state of the art in the MIRFlickr dataset when training in the target data. Further we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ GGG2018a Serial 3175  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages  
  Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
 

 
Author Sergio Escalera; Markus Weimer; Mikhail Burtsev; Valentin Malykh; Varvara Logacheva; Ryan Lowe; Iulian Vlad Serban; Yoshua Bengio; Alexander Rudnicky; Alan W. Black; Shrimai Prabhumoye; Łukasz Kidzinski; Mohanty Sharada; Carmichael Ong; Jennifer Hicks; Sergey Levine; Marcel Salathe; Scott Delp; Iker Huerga; Alexander Grigorenko; Leifur Thorbergsson; Anasuya Das; Kyla Nemitz; Jenna Sandker; Stephen King; Alexander S. Ecker; Leon A. Gatys; Matthias Bethge; Jordan Boyd Graber; Shi Feng; Pedro Rodriguez; Mohit Iyyer; He He; Hal Daume III; Sean McGregor; Amir Banifatemi; Alexey Kurakin; Ian Goodfellow; Samy Bengio edit  url
isbn  openurl
  Title Introduction to NIPS 2017 Competition Track Type Book Chapter
  Year 2018 Publication The NIPS ’17 Competition: Building Intelligent Systems Abbreviated Journal  
  Volume Issue Pages 1-23  
  Keywords  
  Abstract Competitions have become a popular tool in the data science community to solve hard problems, assess the state of the art and spur new research directions. Companies like Kaggle and open source platforms like Codalab connect people with data and a data science problem to those with the skills and means to solve it. Hence, the question arises: What, if anything, could NIPS add to this rich ecosystem?

In 2017, we embarked to find out. We attracted 23 potential competitions, of which we selected five to be NIPS 2017 competitions. Our final selection features competitions advancing the state of the art in other sciences such as “Classifying Clinically Actionable Genetic Mutations” and “Learning to Run”. Others, like “The Conversational Intelligence Challenge” and “Adversarial Attacks and Defences” generated new data sets that we expect to impact the progress in their respective communities for years to come. And “Human-Computer Question Answering Competition” showed us just how far we as a field have come in ability and efficiency since the break-through performance of Watson in Jeopardy. Two additional competitions, DeepArt and AI XPRIZE Milestions, were also associated to the NIPS 2017 competition track, whose results are also presented within this chapter.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Sergio Escalera; Markus Weimer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-94042-7 Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ EWB2018 Serial 3200  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: