toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz edit   pdf
openurl 
  Title (up) Gate-Shift Networks for Video Action Recognition Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.  
  Address Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ SEL2020 Serial 3438  
Permanent link to this record
 

 
Author Xinhang Song; Haitao Zeng; Sixian Zhang; Luis Herranz; Shuqiang Jiang edit  url
openurl 
  Title (up) Generalized Zero-shot Learning with Multi-source Semantic Embeddings for Scene Recognition Type Conference Article
  Year 2020 Publication 28th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recognizing visual categories from semantic descriptions is a promising way to extend the capability of a visual classifier beyond the concepts represented in the training data (i.e. seen categories). This problem is addressed by (generalized) zero-shot learning methods (GZSL), which leverage semantic descriptions that connect them to seen categories (e.g. label embedding, attributes). Conventional GZSL are designed mostly for object recognition. In this paper we focus on zero-shot scene recognition, a more challenging setting with hundreds of categories where their differences can be subtle and often localized in certain objects or regions. Conventional GZSL representations are not rich enough to capture these local discriminative differences. Addressing these limitations, we propose a feature generation framework with two novel components: 1) multiple sources of semantic information (i.e. attributes, word embeddings and descriptions), 2) region descriptions that can enhance scene discrimination. To generate synthetic visual features we propose a two-step generative approach, where local descriptions are sampled and used as conditions to generate visual features. The generated features are then aggregated and used together with real features to train a joint classifier. In order to evaluate the proposed method, we introduce a new dataset for zero-shot scene recognition with multi-semantic annotations. Experimental results on the proposed dataset and SUN Attribute dataset illustrate the effectiveness of the proposed method.  
  Address Virtual; October 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ACM  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ SZZ2020 Serial 3465  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez edit   pdf
doi  openurl
  Title (up) Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models Type Journal Article
  Year 2020 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 128 Issue Pages 1505–1536  
  Keywords Procedural generation; Human action recognition; Synthetic data; Physics  
  Abstract Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.124; 600.118 Approved no  
  Call Number Admin @ si @ SGC2019 Serial 3303  
Permanent link to this record
 

 
Author Xialei Liu; Chenshen Wu; Mikel Menta; Luis Herranz; Bogdan Raducanu; Andrew Bagdanov; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title (up) Generative Feature Replay for Class-Incremental Learning Type Conference Article
  Year 2020 Publication CLVISION – Workshop on Continual Learning in Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem.
We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning
 
  Address Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 601.309; 602.200; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LWM2020 Serial 3419  
Permanent link to this record
 

 
Author Josep Famadas; Meysam Madadi; Cristina Palmero; Sergio Escalera edit   pdf
url  openurl
  Title (up) Generative Video Face Reenactment by AUs and Gaze Regularization Type Conference Article
  Year 2020 Publication 15th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 444-451  
  Keywords  
  Abstract In this work, we propose an encoder-decoder-like architecture to perform face reenactment in image sequences. Our goal is to transfer the training subject identity to a given test subject. We regularize face reenactment by facial action unit intensity and 3D gaze vector regression. This way, we enforce the network to transfer subtle facial expressions and eye dynamics, providing a more lifelike result. The proposed encoder-decoder receives as input the previous sequence frame stacked to the current frame image of facial landmarks. Thus, the generated frames benefit from appearance and geometry, while keeping temporal coherence for the generated sequence. At test stage, a new target subject with the facial performance of the source subject and the appearance of the training subject is reenacted. Principal component analysis is applied to project the test subject geometry to the closest training subject geometry before reenactment. Evaluation of our proposal shows faster convergence, and more accurate and realistic results in comparison to other architectures without action units and gaze regularization.  
  Address Virtual; November 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ FMP2020 Serial 3517  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez edit  doi
openurl 
  Title (up) Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem Type Journal
  Year 2020 Publication Mathematics Abbreviated Journal MATH  
  Volume 20 Issue 8(9) Pages 1595  
  Keywords STEM education; Project-based learning; Coding; software tool  
  Abstract In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
 
  Address September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ISE Approved no  
  Call Number Admin @ si @ Serial 3722  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title (up) Hand pose aware multimodal isolated sign language recognition Type Journal Article
  Year 2020 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 80 Issue Pages 127–163  
  Keywords  
  Abstract Isolated hand sign language recognition from video is a challenging research area in computer vision. Some of the most important challenges in this area include dealing with hand occlusion, fast hand movement, illumination changes, or background complexity. While most of the state-of-the-art results in the field have been achieved using deep learning-based models, the previous challenges are not completely solved. In this paper, we propose a hand pose aware model for isolated hand sign language recognition using deep learning approaches from two input modalities, RGB and depth videos. Four spatial feature types: pixel-level, flow, deep hand, and hand pose features, fused from both visual modalities, are input to LSTM for temporal sign recognition. While we use Optical Flow (OF) for flow information in RGB video inputs, Scene Flow (SF) is used for depth video inputs. By including hand pose features, we show a consistent performance improvement of the sign language recognition model. To the best of our knowledge, this is the first time that this discriminant spatiotemporal features, benefiting from the hand pose estimation features and multi-modal inputs, are fused for isolated hand sign language recognition. We perform a step-by-step analysis of the impact in terms of recognition performance of the hand pose features, different combinations of the spatial features, and different recurrent models, especially LSTM and GRU. Results on four public datasets confirm that the proposed model outperforms the current state-of-the-art models on Montalbano II, MSR Daily Activity 3D, and CAD-60 datasets with a relative accuracy improvement of 1.64%, 6.5%, and 7.6%. Furthermore, our model obtains a competitive results on isoGD dataset with only 0.22% margin lower than the current state-of-the-art model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ RKE2020 Serial 3524  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title (up) Hand sign language recognition using multi-view hand skeleton Type Journal Article
  Year 2020 Publication Expert Systems With Applications Abbreviated Journal ESWA  
  Volume 150 Issue Pages 113336  
  Keywords Multi-view hand skeleton; Hand sign language recognition; 3DCNN; Hand pose estimation; RGB video; Hand action recognition  
  Abstract Hand sign language recognition from video is a challenging research area in computer vision, which performance is affected by hand occlusion, fast hand movement, illumination changes, or background complexity, just to mention a few. In recent years, deep learning approaches have achieved state-of-the-art results in the field, though previous challenges are not completely solved. In this work, we propose a novel deep learning-based pipeline architecture for efficient automatic hand sign language recognition using Single Shot Detector (SSD), 2D Convolutional Neural Network (2DCNN), 3D Convolutional Neural Network (3DCNN), and Long Short-Term Memory (LSTM) from RGB input videos. We use a CNN-based model which estimates the 3D hand keypoints from 2D input frames. After that, we connect these estimated keypoints to build the hand skeleton by using midpoint algorithm. In order to obtain a more discriminative representation of hands, we project 3D hand skeleton into three views surface images. We further employ the heatmap image of detected keypoints as input for refinement in a stacked fashion. We apply 3DCNNs on the stacked features of hand, including pixel level, multi-view hand skeleton, and heatmap features, to extract discriminant local spatio-temporal features from these stacked inputs. The outputs of the 3DCNNs are fused and fed to a LSTM to model long-term dynamics of hand sign gestures. Analyzing 2DCNN vs. 3DCNN using different number of stacked inputs into the network, we demonstrate that 3DCNN better capture spatio-temporal dynamics of hands. To the best of our knowledge, this is the first time that this multi-modal and multi-view set of hand skeleton features are applied for hand sign language recognition. Furthermore, we present a new large-scale hand sign language dataset, namely RKS-PERSIANSIGN, including 10′000 RGB videos of 100 Persian sign words. Evaluation results of the proposed model on three datasets, NYU, First-Person, and RKS-PERSIANSIGN, indicate that our model outperforms state-of-the-art models in hand sign language recognition, hand pose estimation, and hand action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2020a Serial 3411  
Permanent link to this record
 

 
Author Arnau Baro; Alicia Fornes; Carles Badal edit   pdf
openurl 
  Title (up) Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism Type Conference Article
  Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.  
  Address Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BFB2020 Serial 3448  
Permanent link to this record
 

 
Author Estefania Talavera; Maria Leyva-Vallina; Md. Mostafa Kamal Sarker; Domenec Puig; Nicolai Petkov; Petia Radeva edit   pdf
url  openurl
  Title (up) Hierarchical approach to classify food scenes in egocentric photo-streams Type Journal Article
  Year 2020 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal J-BHI  
  Volume 24 Issue 3 Pages 866 - 877  
  Keywords  
  Abstract Recent studies have shown that the environment where people eat can affect their nutritional behaviour. In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams. Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes. In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine. We propose a model that classifies food-related scenes organized in a semantic hierarchy. Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested. Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ TLM2020 Serial 3380  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit  url
openurl 
  Title (up) Hierarchical graphs for coarse-to-fine error tolerant matching Type Journal Article
  Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 134 Issue Pages 116-124  
  Keywords Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval  
  Abstract During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 603.057; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ RLF2020 Serial 3349  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
url  openurl
  Title (up) Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition Type Journal Article
  Year 2020 Publication Neural Computing and Applications Abbreviated Journal NEUCOMA  
  Volume 32 Issue Pages 11579–11596  
  Keywords  
  Abstract Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121; 600.141 Approved no  
  Call Number Admin @ si @ DRL2020 Serial 3348  
Permanent link to this record
 

 
Author Lluis Gomez; Dena Bazazian; Dimosthenis Karatzas edit  openurl
  Title (up) Historical review of scene text detection research Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GBK2020 Serial 3495  
Permanent link to this record
 

 
Author Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Sebastien Treguer edit   pdf
openurl 
  Title (up) How far are we from true AutoML: reflection from winning solutions and results of AutoDL challenge Type Conference Article
  Year 2020 Publication 7th ICML Workshop on Automated Machine Learning Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Following the completion of the AutoDL challenge (the final challenge in the ChaLearn
AutoDL challenge series 2019), we investigate winning solutions and challenge results to
answer an important motivational question: how far are we from achieving true AutoML?
On one hand, the winning solutions achieve good (accurate and fast) classification performance on unseen datasets. On the other hand, all winning solutions still contain a
considerable amount of hard-coded knowledge on the domain (or modality) such as image,
video, text, speech and tabular. This form of ad-hoc meta-learning could be replaced by
more automated forms of meta-learning in the future. Organizing a meta-learning challenge could help forging AutoML solutions that generalize to new unseen domains (e.g.
new types of sensor data) as well as gaining insights on the AutoML problem from a more
fundamental point of view. The datasets of the AutoDL challenge are a resource that can
be used for further benchmarks and the code of the winners has been outsourced, which is
a big step towards “democratizing” Deep Learning.
 
  Address Virtual; July 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICML  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ LPX2020 Serial 3502  
Permanent link to this record
 

 
Author Anna Esposito; Italia Cirillo; Antonietta Esposito; Leopoldina Fortunati; Gian Luca Foresti; Sergio Escalera; Nikolaos Bourbakis edit  openurl
  Title (up) Impairments in decoding facial and vocal emotional expressions in high functioning autistic adults and adolescents Type Conference Article
  Year 2020 Publication Faces and Gestures in E-health and welfare workshop Abbreviated Journal  
  Volume Issue Pages 667-674  
  Keywords  
  Abstract  
  Address Virtual; November 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FGW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ ECE2020 Serial 3516  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: