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Abstract

Following the completion of the AutoDL challenge (the final challenge in the ChaLearn
AutoDL challenge series 2019), we investigate winning solutions and challenge results to
answer an important motivational question: how far are we from achieving true AutoML?
On one hand, the winning solutions achieve good (accurate and fast) classification per-
formance on unseen datasets. On the other hand, all winning solutions still contain a
considerable amount of hard-coded knowledge on the domain (or modality) such as image,
video, text, speech and tabular. This form of ad-hoc meta-learning could be replaced by
more automated forms of meta-learning in the future. Organizing a meta-learning chal-
lenge could help forging AutoML solutions that generalize to new unseen domains (e.g.
new types of sensor data) as well as gaining insights on the AutoML problem from a more
fundamental point of view. The datasets of the AutoDL challenge are a resource that can
be used for further benchmarks and the code of the winners has been outsourced, which is
a big step towards “democratizing” Deep Learning.

1. Introduction

Following the completion of the ChaLearn AutoDL challenges 2019 (Liu et al., 2020), we are
interested in how an important motivational question has been addressed: how far are we
from achieving true AutoML (Hutter et al., 2018)? Here the AutoML problem asks whether
one could have one single algorithm (an AutoML algorithm) that can perform learning on
a large spectrum of data and always has consistently good performance, removing the need
for human expertise (which is exactly the opposite of No Free Lunch theorems (Wolpert

c©2020 Z. Liu et al..



Liu et al.

and Macready, 1997; Wolpert, 1996, 2001)). And by “good” performance, we actually mean
“accurate” and “fast”, which corresponds to the any-time learning setting emphasized
by the AutoDL challenge.

On the negative side, disappointingly, there was no novel theoretical insight that tran-
spired from the contributions made in this challenge. Also, despite our effort to format all
datasets uniformly to encourage generic solutions, the participants adopted specific work-
flows for each domain/modality. And, although some solutions improved over Baseline
3 (the strongest baseline we provide to participants), it strongly influenced many. Deep
Learning solutions dominated, but Neural Architecture Search was impractical within the
time budget imposed. Most solutions relied on fixed-architecture pre-trained networks, with
fine-tuning.

However, on the positive side, several interesting and important results were obtained,
including that the top two winners passed all final tests without failure, a significant step
towards true automation since their code was blind-tested for training and testing on
datasets never seen before, albeit from the same domains. Their solutions were open-
sourced, see http://autodl.chalearn.org. Also, any-time learning was addressed
successfully, without sacrificing final performance. In the rest of the paper, review
these results in more details and suggest future directions, including the organization of a
meta-learning challenge, which would push AutoML one step further, toward generalizing
to new domains.

2. Challenge design

In AutoDL challenge, raw data (images, videos, audio, text, tabular, etc) are provided to
participants formatted in a uniform tensor manner (namely TFRecords, a standard generic
data format used by TensorFlow). We formatted around 100 datasets in total and used 66
of them for all AutoDL challenges: 17 image, 10 video, 16 text, 16 speech and 7 tabular.
15 datasets are used in AutoDL challenge (Table 1). Information on some meta-features of
all AutoDL datasets can be found on the “Benchmark” page1 of our website.

An important feature of the AutoDL challenge is that the code of the participants is
blind tested, without any human intervention, in uniform conditions imposing restrictions
on training and test time and memory resources, to push the state-of-the-art in automated
machine learning. The challenge had 2 phases: a feedback phase during which methods
were trained and tested on the platform on 5 practice datasets. During the feedback phase,
the participants could make several submissions per day and get immediate feedback on a
leaderboard. In the final phase, 10 fresh datasets are used. Only one final code submission
was allowed in that phase. We ran the challenge on the CodaLab platform (http://
competitions.codalab.org), with support from Google Cloud virtual machines equipped
with NVIDIA Tesla P100 GPUs.

The AutoDL challenge encourages any-time learning by scoring participants with the
Area under the Learning Curve (ALC) (see definition in (Liu et al., 2019a), and examples
of learning curves can in Figure 1). The participants can train in increments of a chosen
duration (not necessarily fixed) to progressively improve performance, until the time limit
is attained. Performance is measured by the NAUC or Normalized Area Under ROC Curve

1. https://autodl.chalearn.org/benchmark
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Figure 1: Learning curves of top-9 teams (together with one baseline) on the datasets
Yolo(video) and Tal(text) from the AutoDL challenge final phase. We observe different
patterns of learning curves, revealing various strategies adopted by participating teams. For
Tal, the curve of DeepBlueAI goes up quickly at the beginning but stabilizes at an inferior
final performance (and also inferior any-time performance) than DeepWisdom. The fact that
these two curves cross each other suggests that one might be able to combine these 2 methods
to improve the exploration-exploitation trade-off. Finally, although different patterns are
found, some teams such as team zhaw, surromind and automl freiburg show very similar
patterns on Tal. This is because all teams adopted a domain-dependent approach and some
teams simply used the code of Baseline 3 for certain domains (text in this case).

(AUC) NAUC = 2 × AUC − 1 averaged over all classes. Since several predictions can be
made during the learning process, this allows us to plot learning curves, i. e. “performance”
(on test set) as a function of time. Then for each dataset, we compute the Area under
Learning Curve (ALC). The time axis is log scaled (with time transformation defined in
(Liu et al., 2019a)) to put more emphasis on the beginning of the curve. Finally, in each
phase, an overall rank for the participants is obtained by averaging their ALC ranks obtained
on each individual dataset. The average rank in the final phase is used to determine the
winners.

As in previous challenges (e.g. AutoCV, AutoCV2, AutoNLP and AutoSpeech), we
provide 3 baselines (Baseline 0, 1 and 2) for different levels of use: Baseline 0 is just
constant predictions for debug purposes, Baseline 1 a linear model, and Baseline 2 a CNN
(see (Liu et al., 2019b) for details). In the AutoDL challenge, we provide additionally a
Baseline 3 Liu et al. (2020) which combines the winning solutions of previous challenges2.

3. AutoDL challenge results

The AutoDL challenge (the last challenge in the AutoDL challenges series 2019) lasted from
14 Dec 2019 (launched during NeurIPS 2019) to 3 Apr 2020. It has had a participation
of 54 teams with 247 submissions in total and 2614 dataset-wise submissions. Among

2. The code of Baseline 3 can be found at https://autodl.chalearn.org/benchmark.
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(a) All results included (b) Rectangular area in 2a zoomed

Figure 2: ALC and final NAUC performances of DeepWisdom on all 66 AutoDL
datasets. Different domains are shown with different markers. In 2a, the dataset name
is shown beside each point except the top-right area, which is shown in Figure 2b. Note
that among all 66 AutoDL datasets, DeepWisdom only fails on PU5 (due to a time limit
exceeded error), showing the robustness of the winning method.

these teams, 19 of them managed to get a better performance (i.e. average rank over
the 5 feedback phase datasets) than that of Baseline 3 in feedback phase and entered the
final phase of blind test. According to our challenge rules, only teams that provided a
description of their approach (by filling out some fact sheets we sent out) were eligible
for getting a ranking in the final phase. We received 8 copies of these fact sheets and
thus only these 8 teams were ranked. These teams are (alphabetical order): DeepBlueAI,
DeepWisdom, frozenmad, Inspur AutoDL, Kon, PASA NJU, surromind, team zhaw. One
team (automl freiburg) made a late submission and isn’t eligible for prizes but will be
included in the post-analysis for scientific purpose.

The final ranking is computed from the performances on the 10 unseen datasets in
the final phase. To reduce the variance from diverse factors such as randomness in the
submission code and randomness of the execution environment (which makes the exact
ALC scores very hard to reproduce since the wall-time is hard to control exactly), we re-
run every submission several times and average the ALC scores. The average ALC scores
obtained by each team is shown in Figure 3 (the teams are ordered by their final ranking).
The large error bars account for code failures.

4. Winning approaches

A summary of the winning approaches on each domain can be found in Table 2. Another
summary using a categorization by machine learning techniques can be found in Table 3.
We see in Table 2 that almost all approaches used 5 different methods from 5 domains.
And for each domain, the winning teams’ approaches are much inspired by Baseline 3. This
means that we haven’t achieved true AutoML since for each new domain we still need to
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Figure 3: ALC scores of top 9 teams in AutoDL final phase averaged over repeated
evaluations (and Baseline 3, for comparison). The entry of top 6 teams are re-run 9 times
and 3 times for other teams. Error bars are shown with (half) length corresponding to the
standard deviation from these runs. Some rare entries are excluded for computing these
statistics due to failures caused by the challenge platform backend. The team ordering
follows that of their average rank in the final phase. More information on the task can be
found in Table 1.

hard-code a new approach. In Table 3, we see that almost all different machine learning
techniques are actively present and frequently used in all domains (exception some rare
cases for example transfer learning on tabular data).

4.1 AutoML generalization ability of winning approaches

One crucial question for all AutoML methods is whether the method can have good perfor-
mances on unseen datasets. We propose to compare the average rank of all top-8 methods in
both feedback phase and final phase, then compute the Pearson correlation (Pearson’s ρ) of
the 2 rank vectors (thus similar to Spearman’s rank correlation (Wikipedia, 2020)). The av-
erage ranks of top methods are shown in Figure 4b, with a Pearson correlation ρX,Y = 0.91
and p-value p = 5.8 × 10−4. This means that the correlation is statistically significant and
no leaderboard overfitting is observed. Thus the winning solutions can indeed generalize to
unseen datasets, showing AutoML generalization ability. To show this even further, we ran
DeepWisdom’s solution on all 66 AutoDL datasets and the results are shown in Figure 2.
We see that the winning approach DeepWisdom only fails on 1 out of the 66 tasks, showing
the AutoML generalization ability of the winning approach.

4.2 Dealing with any-time learning

Figure 4a informs on participant’s effectiveness to address the any-time learning problem.
We first factored out dataset difficulty by re-scaling ALC and NAUC scores (resulting scores
on each dataset having mean 0 and variance 1). Then we plotted, for each participant, their
fraction of submissions in which ALC is larger than NAUC vs. correlation(ALC,NAUC).
From the figure, we see that any-time performance (ALC) and final performance (NAUC)
are often quite correlated, but only those who favor ALC can win the challenge. This
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(a) %(ALC > NAUC) vs corr(ALC,NAUC).
ALC and NAUC were “scaled” within each task.
The numbers in the legend are average scaled
ALC and average rank of each participant. The
marker size increases monotonically with average
scaled ALC. We see that the top-2 teams Deep-
Wisdom and DeepBlueAI indeed have higher frac-
tion of (ALC > NAUC), meaning that they put
much effort to improve any-time learning per-
formance (ALC score). However, DeepWisdom
shows lower correlation between ALC and NAUC,
which means that their final performance (NAUC)
may not always be the best.

(b) Task over-modeling: We compare perfor-
mance in the feedback and final phase, in an ef-
fort to detect possible habituation to the feedback
datasets due to multiple submissions. The average
rank of the top-8 teams is shown. The figure sug-
gests no strong over-modeling (over-fitting at the
meta-learning level): A team having a significantly
better rank in the feedback phase than in the fi-
nal phase would be over-modeling (far above the
diagonal). The Pearson correlation is ρX,Y = 0.91
and p-value p = 5.8 × 10−4.

suggests that the any-time learning problem could be strictly harder than the usual final
performance problem.

5. Conclusion and further work

We reviewed the design and results of the final challenge in AutoDL series 2019: the AutoDL
challenge. Deep learning is still dominant and more importantly, fixed domain-dependent
pre-trained neural architectures are heavily used. Diverse human knowledge (especially that
of deep learning) is hard-coded in these architectures and deployed to different domains such
as image, video, text, speech and tabular. Neural architecture search (NAS) (see e.g. Hutter
et al., 2018, for a review) hasn’t been employed due to its huge computational cost which
doesn’t fit well in our any-time learning setting, with a relatively small maximum time bud-
get. Nevertheless, the AutoDL challenge helped pushing the state of the art in AutoDL.
Among other things, the challenge revealed that Automated Deep Learning methods are
ripe for all these domains and show good performance on unseen datasets, which is one of
the most important goals of AutoML. Also, meta-learning seems one of the most promising
avenues to future explore. While our AutoDL challenge series continues (with currently the
AutoGraph challenge, see http://autodl.chalearn.org), we are currently investigating
several possible meta-learning challenge protocols for a future cross-modal NAS challenge.
This could encourage researchers to automate meta-learning, leading perhaps to a universal
workflow, universal coding, cross-modal feature representations, universal neural architec-
tures or meta-architectures, and/or universal hyper-parameter search trainable agents.
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countless hours that André spent engineering the data format. The special version of the CodaLab platform
we used was implemented by Tyler Thomas, with the help of Eric Carmichael, CK Collab, LLC, USA. Many

8

https://hal.archives-ouvertes.fr/hal-02265053
https://hal.archives-ouvertes.fr/hal-02265053
https://hal.archives-ouvertes.fr/hal-02386805
http://arxiv.org/abs/1409.0575
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=953109044
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=953109044
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=953109044
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
https://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
https://doi.org/10.1162/neco.1996.8.7.1341


AutoDL challenge

people contributed time to help formatting datasets, prepare baseline results, and facilitate the logistics.
The full list is found on our website https://autodl.chalearn.org/.

9

https://autodl.chalearn.org/


Liu et al.

Appendix A. Datasets used in AutoDL challenge

Table 1: Datasets of the AutoDL challenge, for both phases. The final phase datasets
(meta-test datasets) vary a lot in terms of number of classes, number of training examples,
and tensor dimension, compared to those in the feedback phase. This was one of the
difficulties of the AutoDL challenge. “chnl” codes for channel, “var” for variable size, “CE
pair” for “cause-effect pair”. More information on all 66 datasets used in AutoDL challenges
can be found at https://autodl.chalearn.org/benchmark.

Class Sample number Tensor dimension
# Dataset Phase Topic Domain num. train test time row col chnl

1 Apollon feedback people image 100 6077 1514 1 var var 3
2 Monica1 feedback action video 20 10380 2565 var 168 168 3
3 Sahak feedback speech time 100 3008 752 var 1 1 1
4 Tanak feedback english text 2 42500 7501 var 1 1 1
5 Barak feedback CE pair tabular 4 21869 2430 1 1 270 1
6 Ray final medical image 7 4492 1114 1 976 976 3
7 Fiona final action video 6 8038 1962 var var var 3
8 Oreal final speech time 3 2000 264 var 1 1 1
9 Tal final chinese text 15 250000 132688 var 1 1 1
10 Bilal final audio tabular 20 10931 2733 1 1 400 1
11 Cucumber final people image 100 18366 4635 1 var var 3
12 Yolo final action video 1600 836 764 var var var 3
13 Marge final music time 88 9301 4859 var 1 1 1
14 Viktor final english text 4 2605324 289803 var 1 1 1
15 Carla final neural tabular 20 10931 2733 1 1 535 1
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