toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Antonio Lopez; Joan Serrat; Cristina Cañero; Felipe Lumbreras; T. Graf edit   pdf
doi  openurl
  Title Robust lane markings detection and road geometry computation Type Journal Article
  Year 2010 Publication International Journal of Automotive Technology Abbreviated Journal IJAT  
  Volume 11 Issue 3 Pages 395–407  
  Keywords lane markings  
  Abstract Detection of lane markings based on a camera sensor can be a low-cost solution to lane departure and curve-over-speed warnings. A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue because of cast shadows, worn and occluded markings, variable ambient lighting conditions, for example. We focus on increasing detection reliability in two ways. First, we employed an image feature other than the commonly used edges: ridges, which we claim addresses this problem better. Second, we adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane lines to the image features, based on both ridgeness and ridge orientation. In addition, the model was fitted for the left and right lane lines simultaneously to enforce a consistent result. Four measures of interest for driver assistance applications were directly computed from the fitted parametric model at each frame: lane width, lane curvature, and vehicle yaw angle and lateral offset with regard the lane medial axis. We qualitatively assessed our method in video sequences captured on several road types and under very different lighting conditions. We also quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory ground truth are known.  
  Address  
  Corporate Author Thesis  
  Publisher The Korean Society of Automotive Engineers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1229-9138 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ LSC2010 Serial 1300  
Permanent link to this record
 

 
Author David Geronimo; Angel Sappa; Antonio Lopez edit   pdf
url  openurl
  Title Stereo-based Candidate Generation for Pedestrian Protection Systems Type Book Chapter
  Year 2010 Publication Binocular Vision: Development, Depth Perception and Disorders Abbreviated Journal  
  Volume Issue 9 Pages 189–208  
  Keywords Pedestrian Detection  
  Abstract This chapter describes a stereo-based algorithm that provides candidate image windows to a latter 2D classification stage in an on-board pedestrian detection system. The proposed algorithm, which consists of three stages, is based on the use of both stereo imaging and scene prior knowledge (i.e., pedestrians are on the ground) to reduce the candidate searching space. First, a successful road surface fitting algorithm provides estimates on the relative ground-camera pose. This stage directs the search toward the road area thus avoiding irrelevant regions like the sky. Then, three different schemes are used to scan the estimated road surface with pedestrian-sized windows: (a) uniformly distributed through the road surface (3D); (b) uniformly distributed through the image (2D); (c) not uniformly distributed but according to a quadratic function (combined 2D-3D). Finally, the set of candidate windows is reduced by analyzing their 3D content. Experimental results of the proposed algorithm, together with statistics of searching space reduction are provided.  
  Address  
  Corporate Author Thesis  
  Publisher NOVA Publishers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GSL2010 Serial 1301  
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title 3D Scene Priors for Road Detection Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 57–64  
  Keywords road detection  
  Abstract Vision-based road detection is important in different areas of computer vision such as autonomous driving, car collision warning and pedestrian crossing detection. However, current vision-based road detection methods are usually based on low-level features and they assume structured roads, road homogeneity, and uniform lighting conditions. Therefore, in this paper, contextual 3D information is used in addition to low-level cues. Low-level photometric invariant cues are derived from the appearance of roads. Contextual cues used include horizon lines, vanishing points, 3D scene layout and 3D road stages. Moreover, temporal road cues are included. All these cues are sensitive to different imaging conditions and hence are considered as weak cues. Therefore, they are combined to improve the overall performance of the algorithm. To this end, the low-level, contextual and temporal cues are combined in a Bayesian framework to classify road sequences. Large scale experiments on road sequences show that the road detection method is robust to varying imaging conditions, road types, and scenarios (tunnels, urban and highway). Further, using the combined cues outperforms all other individual cues. Finally, the proposed method provides highest road detection accuracy when compared to state-of-the-art methods.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS;ISE Approved no  
  Call Number ADAS @ adas @ AGL2010a Serial 1302  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit  doi
isbn  openurl
  Title Relaxing the 3L Algorithm for an Accurate Implicit Polynomial Fitting Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3066-3072  
  Keywords  
  Abstract This paper presents a novel method to increase the accuracy of linear fitting of implicit polynomials. The proposed method is based on the 3L algorithm philosophy. The novelty lies on the relaxation of the additional constraints, already imposed by the 3L algorithm. Hence, the accuracy of the final solution is increased due to the proper adjustment of the expected values in the aforementioned additional constraints. Although iterative, the proposed approach solves the fitting problem within a linear framework, which is independent of the threshold tuning. Experimental results, both in 2D and 3D, showing improvements in the accuracy of the fitting are presented. Comparisons with both state of the art algorithms and a geometric based one (non-linear fitting), which is used as a ground truth, are provided.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ RoS2010a Serial 1303  
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; David Geronimo; Antonio Lopez edit   pdf
doi  isbn
openurl 
  Title Learning Appearance in Virtual Scenarios for Pedestrian Detection Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 137–144  
  Keywords Pedestrian Detection; Domain Adaptation  
  Abstract Detecting pedestrians in images is a key functionality to avoid vehicle-to-pedestrian collisions. The most promising detectors rely on appearance-based pedestrian classifiers trained with labelled samples. This paper addresses the following question: can a pedestrian appearance model learnt in virtual scenarios work successfully for pedestrian detection in real images? (Fig. 1). Our experiments suggest a positive answer, which is a new and relevant conclusion for research in pedestrian detection. More specifically, we record training sequences in virtual scenarios and then appearance-based pedestrian classifiers are learnt using HOG and linear SVM. We test such classifiers in a publicly available dataset provided by Daimler AG for pedestrian detection benchmarking. This dataset contains real world images acquired from a moving car. The obtained result is compared with the one given by a classifier learnt using samples coming from real images. The comparison reveals that, although virtual samples were not specially selected, both virtual and real based training give rise to classifiers of similar performance.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title Learning Appearance in Virtual Scenarios for Pedestrian Detection  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ MVG2010 Serial 1304  
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Carlo Gatta; O. Rodriguez-Leor; J. Mauri; Petia Radeva edit  url
doi  openurl
  Title Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization Type Journal Article
  Year 2010 Publication International Journal of Cardiovascular Imaging Abbreviated Journal IJCI  
  Volume 26 Issue 7 Pages 763–779  
  Keywords  
  Abstract Accurate detection of in-vivo vulnerable plaque in coronary arteries is still an open problem. Recent studies show that it is highly related to tissue structure and composition. Intravascular Ultrasound (IVUS) is a powerful imaging technique that gives a detailed cross-sectional image of the vessel, allowing to explore arteries morphology. IVUS data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue. The main drawback of this method is the few number of available case studies and validated data due to the complex procedure of histological analysis of the tissue. On the other hand, IVUS data from in-vivo cases is easy to obtain but it can not be histologically validated. In this work, we propose to enhance the in-vitro training data set by selectively including examples from in-vivo plaques. For this purpose, a Sequential Floating Forward Selection method is reformulated in the context of plaque characterization. The enhanced classifier performance is validated on in-vitro data set, yielding an overall accuracy of 91.59% in discriminating among fibrotic, lipidic and calcified plaques, while reducing the gap between in-vivo and in-vitro data analysis. Experimental results suggest that the obtained classifier could be properly applied on in-vivo plaque characterization and also demonstrate that the common hypothesis of assuming the difference between in-vivo and in-vitro as negligible is incorrect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1569-5794 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ CPG2010 Serial 1305  
Permanent link to this record
 

 
Author David Augusto Rojas; Joost Van de Weijer; Theo Gevers edit  isbn
openurl 
  Title Color Edge Saliency Boosting using Natural Image Statistics Type Conference Article
  Year 2010 Publication 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science Abbreviated Journal  
  Volume Issue Pages 228–234  
  Keywords  
  Abstract State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in depth: (1) The method has ignored the underlying distribution of derivatives in natural images. (2) The dependence of information content in color-boosted edges on its spatial derivatives has not been quantitatively established. (3) To evaluate luminance and color contributions to saliency of edges, a parameter gradually balancing both contributions is required.
We introduce a novel algorithm, based on the principles of independent component analysis, which models the first order derivatives of color natural images by a generalized Gaussian distribution. Furthermore, using this probability model we show that for images with a Laplacian distribution, which is a particular case of generalized Gaussian distribution, the magnitudes of color-boosted edges reflect their corresponding information content. In order to evaluate the impact of color edge saliency in real world applications, we introduce an extension of the Laplacian-of-Gaussian detector to color, and the performance for image matching is evaluated. Our experiments show that our approach provides more discriminative regions in comparison with the original detector.
 
  Address Joensuu, Finland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN 9781617388897 Medium  
  Area Expedition Conference CGIV/MCS  
  Notes ISE Approved no  
  Call Number CAT @ cat @ RWG2010 Serial 1306  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu; Maria Vanrell edit  isbn
openurl 
  Title Local Perceptual Weighting in JPEG2000 for Color Images Type Conference Article
  Year 2010 Publication 5th European Conference on Colour in Graphics, Imaging and Vision and 12th International Symposium on Multispectral Colour Science Abbreviated Journal  
  Volume Issue Pages 255–260  
  Keywords  
  Abstract The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM (Chromatic Induction Wavelet Model).  
  Address Joensuu, Finland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN 9781617388897 Medium  
  Area Expedition Conference CGIV/MCS  
  Notes CIC Approved no  
  Call Number CAT @ cat @ MOV2010a Serial 1307  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu; Maria Vanrell edit  openurl
  Title Contribution of CIWaM in JPEG2000 Quantization for Color Images Type Conference Article
  Year 2010 Publication Proceedings of The CREATE 2010 Conference Abbreviated Journal  
  Volume Issue Pages 132–136  
  Keywords  
  Abstract The aim of this work is to explain how to apply perceptual concepts to define a perceptual pre-quantizer and to improve JPEG2000 compressor. The approach consists in quantizing wavelet transform coefficients using some of the human visual system behavior properties. Noise is fatal to image compression performance, because it can be both annoying for the observer and consumes excessive bandwidth when the imagery is transmitted. Perceptual pre-quantization reduces unperceivable details and thus improve both visual impression and transmission properties. The comparison between JPEG2000 without and with perceptual pre-quantization shows that the latter is not favorable in PSNR, but the recovered image is more compressed at the same or even better visual quality measured with a weighted PSNR. Perceptual criteria were taken from the CIWaM(ChromaticInductionWaveletModel).  
  Address Gjovik (Norway)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CREATE  
  Notes CIC Approved no  
  Call Number CAT @ cat @ MOV2010b Serial 1308  
Permanent link to this record
 

 
Author Fadi Dornaika; Bogdan Raducanu edit  doi
isbn  openurl
  Title Single Snapshot 3D Head Pose Initialization for Tracking in Human Robot Interaction Scenario Type Conference Article
  Year 2010 Publication 1st International Workshop on Computer Vision for Human-Robot Interaction Abbreviated Journal  
  Volume Issue Pages 32–39  
  Keywords 1st International Workshop on Computer Vision for Human-Robot Interaction, in conjunction with IEEE CVPR 2010  
  Abstract This paper presents an automatic 3D head pose initialization scheme for a real-time face tracker with application to human-robot interaction. It has two main contributions. First, we propose an automatic 3D head pose and person specific face shape estimation, based on a 3D deformable model. The proposed approach serves to initialize our realtime 3D face tracker. What makes this contribution very attractive is that the initialization step can cope with faces
under arbitrary pose, so it is not limited only to near-frontal views. Second, the previous framework is used to develop an application in which the orientation of an AIBO’s camera can be controlled through the imitation of user’s head pose.
In our scenario, this application is used to build panoramic images from overlapping snapshots. Experiments on real videos confirm the robustness and usefulness of the proposed methods.
 
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 2160-7508 ISBN 978-1-4244-7029-7 Medium  
  Area Expedition Conference CVPRW  
  Notes OR;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ DoR2010a Serial 1309  
Permanent link to this record
 

 
Author Bogdan Raducanu; Fadi Dornaika edit  doi
isbn  openurl
  Title Dynamic Facial Expression Recognition Using Laplacian Eigenmaps-Based Manifold Learning Type Conference Article
  Year 2010 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages 156–161  
  Keywords  
  Abstract In this paper, we propose an integrated framework for tracking, modelling and recognition of facial expressions. The main contributions are: (i) a view- and texture independent scheme that exploits facial action parameters estimated by an appearance-based 3D face tracker; (ii) the complexity of the non-linear facial expression space is modelled through a manifold, whose structure is learned using Laplacian Eigenmaps. The projected facial expressions are afterwards recognized based on Nearest Neighbor classifier; (iii) with the proposed approach, we developed an application for an AIBO robot, in which it mirrors the perceived facial expression.  
  Address Anchorage; AK; USA;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1050-4729 ISBN 978-1-4244-5038-1 Medium  
  Area Expedition Conference ICRA  
  Notes OR; MV Approved no  
  Call Number BCNPCL @ bcnpcl @ RaD2010 Serial 1310  
Permanent link to this record
 

 
Author David Aldavert; Arnau Ramisa; Ramon Lopez de Mantaras; Ricardo Toledo edit  doi
isbn  openurl
  Title Fast and Robust Object Segmentation with the Integral Linear Classifier Type Conference Article
  Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1046–1053  
  Keywords  
  Abstract We propose an efficient method, built on the popular Bag of Features approach, that obtains robust multiclass pixel-level object segmentation of an image in less than 500ms, with results comparable or better than most state of the art methods. We introduce the Integral Linear Classifier (ILC), that can readily obtain the classification score for any image sub-window with only 6 additions and 1 product by fusing the accumulation and classification steps in a single operation. In order to design a method as efficient as possible, our building blocks are carefully selected from the quickest in the state of the art. More precisely, we evaluate the performance of three popular local descriptors, that can be very efficiently computed using integral images, and two fast quantization methods: the Hierarchical K-Means, and the Extremely Randomized Forest. Finally, we explore the utility of adding spatial bins to the Bag of Features histograms and that of cascade classifiers to improve the obtained segmentation. Our method is compared to the state of the art in the difficult Graz-02 and PASCAL 2007 Segmentation Challenge datasets.  
  Address San Francisco; CA; USA; June 2010  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium  
  Area Expedition Conference CVPR  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ARL2010a Serial 1311  
Permanent link to this record
 

 
Author Simone Balocco; O. Basset; G. Courbebaisse; E. Boni; Alejandro F. Frangi; P. Tortoli; C. Cachard edit  doi
openurl 
  Title Estimation Of Viscoelastic Properties Of Vessel Walls Using a Computational Model and Doppler Ultrasound Type Journal Article
  Year 2010 Publication Physics in Medicine and Biology Abbreviated Journal PMB  
  Volume 55 Issue 12 Pages 3557–3575  
  Keywords  
  Abstract Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BBC2010 Serial 1312  
Permanent link to this record
 

 
Author Simone Balocco; O. Camara; E. Vivas; T. Sola; L. Guimaraens; H. A. van Andel; C. B. Majoie; J. M. Pozo; B. H. Bijnens; Alejandro F. Frangi edit  url
openurl 
  Title Feasibility of Estimating Regional Mechanical Properties of Cerebral Aneurysms In Vivo Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal MEDPHYS  
  Volume 37 Issue 4 Pages 1689–1706  
  Keywords  
  Abstract PURPOSE:
In this article, the authors studied the feasibility of estimating regional mechanical properties in cerebral aneurysms, integrating information extracted from imaging and physiological data with generic computational models of the arterial wall behavior.
METHODS:
A data assimilation framework was developed to incorporate patient-specific geometries into a given biomechanical model, whereas wall motion estimates were obtained from applying registration techniques to a pair of simulated MR images and guided the mechanical parameter estimation. A simple incompressible linear and isotropic Hookean model coupled with computational fluid-dynamics was employed as a first approximation for computational purposes. Additionally, an automatic clustering technique was developed to reduce the number of parameters to assimilate at the optimization stage and it considerably accelerated the convergence of the simulations. Several in silico experiments were designed to assess the influence of aneurysm geometrical characteristics and the accuracy of wall motion estimates on the mechanical property estimates. Hence, the proposed methodology was applied to six real cerebral aneurysms and tested against a varying number of regions with different elasticity, different mesh discretization, imaging resolution, and registration configurations.
RESULTS:
Several in silico experiments were conducted to investigate the feasibility of the proposed workflow, results found suggesting that the estimation of the mechanical properties was mainly influenced by the image spatial resolution and the chosen registration configuration. According to the in silico experiments, the minimal spatial resolution needed to extract wall pulsation measurements with enough accuracy to guide the proposed data assimilation framework was of 0.1 mm.
CONCLUSIONS:
Current routine imaging modalities do not have such a high spatial resolution and therefore the proposed data assimilation framework cannot currently be used on in vivo data to reliably estimate regional properties in cerebral aneurysms. Besides, it was observed that the incorporation of fluid-structure interaction in a biomechanical model with linear and isotropic material properties did not have a substantial influence in the final results.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BCV2010 Serial 1313  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Oriol Pujol; J. Mauri; Petia Radeva edit  doi
openurl 
  Title SRBF: Speckle Reducing Bilateral Filtering Type Journal Article
  Year 2010 Publication Ultrasound in Medicine and Biology Abbreviated Journal UMB  
  Volume 36 Issue 8 Pages 1353-1363  
  Keywords  
  Abstract Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (up) Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ BGP2010 Serial 1314  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: