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Abstract

This chapter describes a stereo-based algorithm that provides candi-
date image windows to a latter 2D classification stage in an on-board
pedestrian detection system. The proposed algorithm, which consists of
three stages, is based on the use of both stereo imaging and scene prior
knowledge (i.e., pedestrians are on the ground) to reduce the candidate
searching space. First, a successful road surface fitting algorithm pro-
vides estimates on the relative ground-camera pose. This stage directs
the search toward the road area thus avoiding irrelevant regions like the
sky. Then, three different schemes are used to scan the estimated road
surface with pedestrian-sized windows: (a) uniformly distributed through
the road surface (3D); (b) uniformly distributed through the image (2D);
(c) not uniformly distributed but according to a quadratic function (com-
bined 2D-3D). Finally, the set of candidate windows is reduced by ana-
lyzing their 3D content. Experimental results of the proposed algorithm,
together with statistics of searching space reduction are provided.

1 Introduction

According to the World Health Organization, every year almost 1.2 million
people are killed and 50 million are injured in traffic accidents worldwide [11].
These dramatic statistics highlight the importance of the research in traffic
safety, which involves not only motor companies but also governments and uni-
versities.

Since the early days of the automobile, in the beginning of 20th century, and
along with its popularization, different mechanisms were successfully incorpo-
rated to the vehicle with the aim of improving its safety. Some examples are
turn signals, seat-belts and airbags. These mechanisms, which rely on physi-
cal devices, were focused on improving safety specifically when accidents where
happening. In the 1980s a sophisticated new line of research began to pursue
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safety in a preventive way: the so-called advanced driver assistance systems
(ADAS). These systems provide information to the driver and perform active
actions (e.g., automatic braking) by the use of different sensors and intelligent
computation. Some ADAS examples are adaptive cruise control (ACC), which
automatically maintains constant distance to a front-vehicle in the same lane,
and lane departure warning (LDW), which warns when the car is driven out the
lane unadvertently.

One of the more complex ADAS are pedestrian protection systems (PPSs),
which aim at improving the safety of these vulnerable road users. Attending to
the number of people involved in vehicle-to-pedestrian accidents, e.g., 150 000
injured and 7 000 killed people each year in the European Union [6], it is clear
that any improvement in these systems can potentially save many human lifes.
PPSs detect the presence of people in a specific area of interest around the
host vehicle in order to warn the driver, perform braking actions and deploy
external airbags in the case of an unavoidable collision. The most used sensor
to detect pedestrians are cameras, contrary to other ADAS such as ACC, in
which active sensors like radar or lidar are employed. Hence, Computer Vision
(CV) techniques play a key role in this research area, which is not strange given
that vision is the most used human sense when driving. People detection has
been an important topic of research since the beginning of CV, and it has been
mainly focused on applications like surveillance, image retrieval and human-
machine interfaces. However, the problem faced by PPSs differs from these
applications and is far from being solved. The main challenges of PPSs are
summarized in the following points:

• Pedestrians have a high variability in pose (human body can be viewed
as a highly deformable target), clothes (which change with the weather,
culture, and people), distance (typically from 5 to at least 25m), sizes (not
only adults and children are different, but also there are many different
human constitutions), viewpoints (e.g., front, back or side viewed).

• The variability of the scenarios is also considerable, i.e., the detection
takes place in outdoor dynamic urban roads with cluttered background
and illumination changes.

• The requirements in terms of misdetections and computational cost are
hard: these systems must perform real-time actions at very low miss rates.

The first research works in PPSs were presented in the late 1990s. Papageor-
giou et al. [10] proposed to extract candidate windows by exhaustively scanning
the input image and classify them with support vector machines based on Haar
Wavelet features. This two-step candidate generation and classification scheme
has been used in a countless number of detection systems: from faces [14], ve-
hicles or generic object detection to human surveillance and image retrieval [3].
The simplest candidate generation approach is the exhaustive scan, also called
sliding window: it consists in scanning the input image with pedestrian-sized
windows (i.e., with a typical aspect ratio around 1/2) at all the possible scales
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and positions. Although this candidate generation method is generic and easy
to implement, it can be improved by making use of some prior knowledge from
the application. Accordingly, during the last decade researchers have tried to
exploit the specific aspects of PPSs to avoid this generation technique. Some
cues used for generating candidates are vertical symmetry [1], infrared hot spots
[4] and 3D points [7]. However, the proposed techniques that exploit them pose
several problems that make the systems not reliable in real-world scenarios. For
example, in the case of 2D analysis, the number of false negatives (i.e., dis-
carded pedestrians) can not be guaranteed to be low enough: symmetry relies
on vertical edges, but in many cases the illumination conditions or background
clutter make them disappear. Hot spot analysis in infrared images holds a sim-
ilar problem because of the environmental conditions [2]. On the other hand,
although stereo stands as a more reliable cue, the aforementioned techniques
also hold problems. In the case of [7], the algorithm assumes a constant road
slope, so the problems appear when the road orientation is not constant which
is common in urban scenarios.

This chapter presents a candidate generation algorithm that reduces the
number of windows to be classified while minimizes the number of wrongly
discarded targets. This is achieved by combining a prior-knowledge criterion,
pedestrians-on-the-ground, and using 3D data to filter the candidates. This
procedure can be seen as a conservative but reliable approach, which in our
opinion is the most convenient option for this early step of the system.

The remainder of the manuscript is organized as follows. First, we introduce
the proposed candidate generation algorithm with a brief description of its com-
ponents and their objective. Then, the three stages in which the algorithm is
divided are presented: Sect. 3 describes the road surface estimation algorithm,
Sect. 4 presents the road scanning and Sect. 5 addresses the candidate filtering.
Finally, Sect. 6 provides experimental results of the algorithm output. In Sect.
7, conclusions and future work is presented.

2 Algorithm Overview

A recent survey on PPSs by Gerónimo et al. [8] proposes a general architec-
ture that consists of six modules, in which most of the existing systems can be
fit. The modules (enumerated in the order of the pipeline process) are: 1) pre-
processing, 2) foreground segmentation, 3) object classification, 4) verification
and refinement, 5) tracking and 6) application. As can be seen, modules 2) and
3) correspond to the steps presented in the introduction. The algorithm pre-
sented in this chapter consists in a candidate generation algorithm to be used in
the foreground segmentation module, which gets an input image and generates
a list of candidates where a pedestrian is likely to appear, to be sent to the next
module, the classifier. There are two main objectives to be carried out in this
module. The first is to reduce the number of candidates, which directly affects
the performance of the system both in terms of speed (the fewer the candidates
sent to the classifier the less the computation time is) and detection rates (neg-
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atives can be pre-filtered by this module). The second is not to discard any
pedestrian, otherwise the later modules will not be able to correct the wrong
filtering.

The proposed algorithm is divided into three stages, as illustrated in Fig. 1.

1. Road surface estimation computes the relative position and orientation
between the camera and the scene (Sect. 3).

2. Road scanning places 3D windows over the estimated road surface using
a given scanning method (Sect. 4).

3. Candidate filtering filters out windows that do not contain enough
stereo evidence of containing vertical objects (Sect. 5).

Next sections describe each stage in detail.

Vertical Objects

Road Surface Estimation Road Scanning Candidate Filtering

Discarded windows Selected windowsEstimated road position Pre-selected windows

Figure 1: Stages of the proposed algorithm.

3 Road Surface Estimation

The first stage is focused on adjusting the candidate searching space to the
region where the probability of finding a pedestrian is higher. In the context
of PPSs, the searching space is the road, hence irrelevant regions like the sky
can be directly ommited from the processing. The main targets of road surface
estimation are two-fold: first, to fit a surface (a plane in the current implemen-
tation) to the road; second, to compute the relative position and orientation
(pose) of the camera1 with respect to such a plane.

A world coordinate system (XW , YW , ZW ) is defined for every acquired stereo
image, in such a way that: the XWZW plane is contained in the current road
fitted plane, just under the camera coordinate system (XC , YC , ZC); the YW axis
contains the origin of the camera coordinate system; the XWYW plane contains
the XC axis and the ZWYW plane contains the ZC axis. Due to that, the six
extrinsic parameters (three for the position and three orientation angles) that

1Also referred to as camera extrinsic parameters.
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refer the camera coordinate system to the world coordinate system reduce to
just three, denoted in the following as (Π,Φ,Θ) (i.e., camera height, roll and
pitch). Figure 2 illustrates the world and camera coordinate systems.

ZC
XC

YC

YW

XW

ZW

Camera
height

Pitch

Roll

Figure 2: Camera coordinate system (XC , YC , ZC) and world coordinate system
(XW , YW , ZW ).

From the (Π,Φ,Θ) parameters, in most situations the value of Φ (roll) is
very close to zero. This condition is fulfilled as a result of a specific camera
mounting procedure that fixes Φ at rest, and because in normal urban driving
situations this value scarcely varies [9].

The proposed approach consists of two substages detailed below (more in-
formation in [13]): i) 3D data point projection and cell selection and ii) road
plane fitting and ROIs setting.

3.1 3D data point projection and cell selection

Let D(r, c) be a depth map provided by the stereo pair with R rows and C
columns, in which each array element (r, c) is a scalar that represents a scene
point of coordinates (xC , yC , zC), referred to the camera coordinate system (Fig.
2). The aim at this first stage is to find a compact subset of points, ζ, containing
most of the road points. To speed up the whole algorithm, most of the processing
at this stage is performed over a 2D space. Initially, 3D data points are mapped
onto cells in the (YCZC) plane, resulting in a 2D discrete representation ψ(o, q);
where o = �DY (r, c) · ς� and q = �DZ(r, c) · ς�, ς representing a scale factor
that controls the size of the bins according to the current depth map (Fig. 3).
The scaling factor is aimed at reducing the projection dimensions with respect
to the whole 3D data in order to both speed up the plane fitting algorithm and
be robust to noise. It is defined as: ς = ((R + C)/2)/(ΔX + ΔY + ΔZ)/3);
(ΔX,ΔY,ΔZ) is the working range in 3D space. Every cell of ψ(o, q) keeps a
reference to the original 3D data points projected onto that position, as well as
a counter with the number of mapped points.

From that 2D representation, one cell per column (i.e., in the Y-axis) is
selected, relying on the assumption that the road surface is the predominant
geometry in the given scene. Hence, it picks the cell with the largest number of
points in each column of the 2D projection. Finally, every selected cell is rep-
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resented by the 2D barycenter (0, (
∑n

i=0 yCi)/n, (
∑n

i=0 zCi)/n) of its n mapped
points. The set of these barycenters defines a compact representation of the
selected subset of points, ζ. Using both one single point per selected cell and a
2D representation, a considerable reduction in the CPU time is reached during
the road plane fitting stage.

ZC

YC

XC

Estimated road plane

Inliers band at ±10cm of 
plane hypothesis

Right camera

Y
W Z

W projection

4m
Camera

39m

50m

5m

Figure 3: YZ Projection and road plane estimation.

3.2 Road plane fitting

The outcome of the previous substage is a compact subset of points, ζ, where
most of them belong to the road. As stated in the previous subsection, Φ (roll)
is assumed to be zero, hence the projection is expected to contain a dominant
2D line corresponding to the road together with noise coming from the objects
in the scene.

The plane fitting stage consits of two steps. The first one is a 2D straight
line parametrisation, which selects the dominant line corresponding to the road.
It uses a RANSAC based [5] fitting applied over 2D barycenters intended for
removing outlier cells. The second step computes plane parameters by means
of a least squares fitting over all 3D data points contained into inlier cells.

Initially, every selected cell is associated with a value that takes into account
the amount of points mapped onto that position. This value will be considered
as a probability density function. The normalized probability density function
is defined as follows: pdfi = ni/N ; where ni represents the number of points
mapped onto the cell i and N represents the total amount of points contained
in the selected cells.

Next, a cumulative distribution function, Fj , is defined as: Fj =
∑j

i=0 pdfi;
If the values of F are randomly sampled at n points, the application of the
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inverse function F−1 to those points leads to a set of n points that are adaptively
distributed according to pdfi.

3.2.1 Dominant 2D Straight Line Parametrisation

At the first step a RANSAC based approach is applied to find the largest set of
cells that fit a straight line, within a user defined band. In order to speed up
the process, a predefined threshold value for inliers/outliers detection has been
defined (a band of ±10 cm was enough for taking into account both data point
accuracy and road planarity); an automatic threshold could be computed for
inliers/outliers detection, following robust estimation of standard deviation of
residual errors [12]. However, it would increase CPU time since robust estima-
tion of standard deviation involves computationally expensive algorithms (e.g.,
sorting functions).
Repeat L times

(a) Draw a random subsample of 2 different barycenter points (P1, P2) ac-
cording to the probability density function pdfi using the above process;

(b) For this subsample, indexed by l (l = 1, ..., L), compute the straight line
parameters (α, β)l;

(c) For this solution, compute the number of inliers among the entire set of
barycenter points contained in ζ, as mentioned above using a ±10 cm
margin.

3.2.2 Road Plane Parametrisation

(a) From the previous 2D stright line parametrisation choose the solution
that has the highest number of inlier;

(b) Compute (a, b, c) plane parameters by using the whole set of 3D points
contained in the cells considered as inliers, instead of the corresponding
barycenters. To this end, the least squares fitting approach [15], which
minimizes the square residual error (1 − axC − byC − czC)2 is used;

(c) In case the number of inliers is smaller than 40% of the total amount of
points contained in ζ (e.g., severe occlusion of the road by other vehicles),
those plane parameters are discarded and the ones corresponding to the
previous frame are used as the correct ones.

4 Road Scanning

Once the road is estimated, candidates are placed on the 3D surface and then
projected to the image plane to perform the 2D classification. The most intuitive
scanning scheme is to distribute windows all over the estimated plane in a
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uniform way, i.e., in a nx×nz grid, with nx sampling points in the road’s X axis
and nz in the Z axis. Each sampling point on the road is used to define a set of
scanning windows, to cover the different sizes of pedestrian, as will be described
later.

Let us define ZCmin = 5m as the minimum ground point seen from the
camera2, ZCmax = 50m as the furthest point, and τ = 100 the number of
available sampling positions along the ZC axis of the road plane (a, b, c). Given
that the points are evenly placed over the 3D plane, the corresponding image
rows can be computed by using the plane and projection equations. Hence, the
sampled rows in the image are:

y = y0 +
f

bz
− f

c

b
, (1)

where z = ZCmin + iδZ ∀i ∈ {0, .., nz − 1}; δZ = (ZCmax − ZCmin)/nz is the
3D sampling stride; (a, b, c) are the plane parameters; f is the camera focal;
and y0 is the y coordinate of the center point of the camera in the image. The
same procedure is applied to the X xis, e.g., from XCmin to XCmax with the nx

sampling points. We refer to this scheme as Uniform World Scanning.
As can be appreciated in Fig. 4(a), this scheme has two main drawbacks:

it oversamples far positions (i.e., Z close to ZCmax) and undersamples near
positions (i.e., the sampling is too sparse when Z is close to the camera). In
order to ammend these problems, it is clear that the sampling cannot rely only
on the world but must be focused on the image. In fact, the sampling is aimed
at extracting candidates in the 2D image. According to this, we compute the
minimum and maximum image rows corresponding to the Z range:

yZC max
= y0 +

f

bZCmax

− f
c

b
, (2)

yZCmin
= y0 +

f

bZCmin

− f
c

b
, (3)

and evenly place the sampling points between these two image rows using:

y = yZC min + iδim ∀i ∈ {0..nz − 1} , (4)

where δim = (yZC min
− yZCmax

)/nz. In this case, the corresponding z in the
plane (later needed to compute the window size) is

z =
f

c+ b(y − y0)
. (5)

In the case of X axis, the same procedure as in the first scheme can be used.
This scheme is called Uniform Image Scanning. In this case, it is seen in Fig.
4(b) that although the density of sampling points for the closer ZC is appropiate,

2With a camera of 6mm focal, oriented to the road avoiding to capture the hood, the first
road point seen is around 4 to 5 meters from the camera.

8



the far ZC are undersampled, i.e., the space between sampling points is too big
(see histogram of the same figure).

Figure 5 displays the sampling functions with respect to the ZC scanning
positions and the image Y axis. The Uniform to Image, in dotted-dashed-blue,
draws a linear function since the windows are evenly distributed over the avail-
able rows. On the contrary, the Uniform to Road, in dashed-red, takes the form
of an hyperbola as a result of the perspective projection. The aforementioned
over- and under-sampling in the top and bottom regions of this curve can be
also seen in this figure. Attending to the problems of these two approaches, we
finally propose the use of a non-uniform scheme that provides a more sensible
sampling, i.e., neither over- nor under-sampling the image or the world. The
idea is to sample the image with a curve in between the two previous schemes,
and adjust the row-sampling according to our needs, i.e., mostly linear in the
bottom region of the image (close Z) and logarithmic-like for further regions
(far Z), but avoiding over-sampling. In our case, we use a quadratic function
of the form y = ax2 + bx + c, constrained to pass through the intersection
points between the linear and hyperbolic curves and by a user defined point
(iuser, yuser) between the two original functions. The curve parameters can be
found by solving the following system of equations:

⎡
⎣
imax

2 imax 1
imin

2 imin 1
iuser

2 iuser 1

⎤
⎦

⎡
⎣
a
b
c

⎤
⎦ =

⎡
⎣
yZCmax

yZC min

yuser

⎤
⎦ , (6)

where imin = 0 and imax = nz − 1. For example, in the non-uniform curve in
Fig. 5 (solid-black line), yuser = imin + (imax − imin)×κ and iuser = imin +
(imax − imin)×λ, where κ = 0.6 and λ = 0.25. For the XC axis we follow
the same procedure as with the other schemes. The resulting scanning, called
non-uniform scanning, can be seen in Fig. 4(c).

Once we have the set of 3D windows on the road, they are used to compute
the corresponding 2D windows to be classified. We assume a pedestrian to
be h = 1.70m high, with an standard deviation σ = 0.2m. In the case of
body width, the variability is much bigger than height, so a width margin is
used to adjust most of human proportions and also leave some space for the
extremities. Hence, the width is defined as a ratio of the height, specifically 1/2.
For example, the mean pedestrian window sizes 1.70× 0.85m, independently of
the extra-margin taken by the classifier3.

5 Candidate Filtering

The final stage of the algorithm is aimed at discarding candidate windows by
making use of the stereo data (Fig. 6). The method starts by aligning the
camera coordinate system with the world coordinate system (see Fig. 2) with
the aim of compensating pitch angle Θ, computed in Sect. 3. Assuming that

3Dalal et al. [3] demonstrate that adding some margin to the window (33% in their case)
results in a performance improvement in their classifier.
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(a) Uniform Road Scanning
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(c) Non-Uniform Scanning

Figure 4: The three different scanning schemes. Right column shows the scan-
ning rows using the different schemes and also a representation of the scan over
the plane. In order to enhance the figure visualization just 50% of the lines are
shown. The histograms of sampled image rows are shown on the left column;
under- and over-sampling problems can be seen.
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Figure 5: Scanning functions. A non-uniform road scanning with parameters
κ = 0.6 and λ = 0.25 is between the uniform to road and to image curves, hence
achieving a more sensible scan.

roll is set to zero, as described in the aforementioned section, the coordinates
of a given point p(x,y,z), referred to the new coordinate system, are computed
as follows:

pxR = px

pyR = cos(Θ)py − sin(Θ)pz

pzR = sin(Θ)py + cos(Θ)pz .
(7)

Then, rotated points located over the road4 are projected onto a uniform grid
GP in the fitted plane (Sect. 3), where each cell has a size of σ×σ. A given point
p(xR, yR, zR) votes into the cell (i, j), where i = �xR/σ� and j = �zR/σ�. The
resulting map GP is shown in Fig. 7(b). As can be seen, cells far away from the
sensor tend to have few projected points. This is caused by two factors. First,
the number of projected points decreases directly with the distance, as a result
of perspective projection. Second, the uncertainty of stereo reconstruction also
increases with distance, thus the points of an ideal vertical and planar object
would spread wider into GP as the distance of these points increases. In order
to amend this problem, the number of points projected onto each cell in GP are

4Set of points placed in a band from 0 to 2m over the road plane, assuming that this is
the maximum height of a pedestrian.
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Figure 6: Schematic illustration of the candidate filtering stage.

reweighted and redistributed. The reweighting function is

GRW (i, j) = jσGP (i, j) , (8)

where jσ corresponds to the real depth of the cell. The redistribution function
consists in propagating the value of GRW to its neighbours as follows:

G(i, j) =
i+η/2∑

s=i−η/2

j+η/2∑
t=j−η/2

GRW (s, t) , (9)

where η is the stereo uncertainty at a given depth (in cells): η = uncertainty/σ.
Uncertainty is computed as a function of disparity values:

uncertainty = f ·baseline
μ

disparity2 , (10)

where baseline is the baseline of the stereo pair in meters, f is the focal length
in pixels and μ is the correlation accuracy of the stereo. The resulting map G,
after reweighting and redistribution processes, is illustrated in Fig. 7(c). The
filtering consists in discarding the candidate windows that are over cells with
less than χ points, which is set experimentally. In our implementation, this
parameter is low in order to fulfill the conservative criterion mentioned in the
introduction, i.e., in this early system module false positives are preferred than
false negatives.

6 Experimental Results

The evaluation of the algorithm has been made using data taken from an on-
board stereo rig (Bumblebee from Point Grey, http://www.ptgrey.com, Fig.
8). The stereo pair has a baseline of 0.12m and each camera has a focal of 6mm
and provides a resolution of 640 × 480 pixel (the figures in the paper show the
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Figure 7: Probability map of vertical objects on the road plane. (a) Origi-
nal frame. (b) Raw projection GP . (c) Reweighted and redistributed vertical
projection map of the frame 3D points.

right sensor image). The HFOV is 43◦ and the VFOV is 33◦, which allows to
detect pedestrians at a minimum of 5m, and the camera reconstruction soft-
ware provides 3D information until 50m, which coincides with the parameters
described in Sect. 3.

As introduced in Sect. 1, one of the most used candidate generation methods
is sliding window. Although this method does not perform an explicit foreground
segmentation, which is our motivation, it is useful as a reference to evaluate the
benefits of our proposal. Let us say that we must detect pedestrians up to
50m, which measure around 12× 24 pixels (of course the size will slightly differ
depending on the focal and the size of the sensor pixels). On the other hand, the
nearest pedestrian fully seen, at 5m, is about 140× 280 pixels. Hence, a regular
exhaustive scan algorithm must place windows of the scales between these two
distances at all the possible positions. If a scale variation is assumed to be
1.2 and the position stride is 4 pixels, the number of windows is over 100 000.
However, smaller windows need a smaller stride between them, so the number
can range between from 200 000 to 400 000.

We have selected 50 frames taken from urban scenarios with the aforemen-
tioned stereo camera and applied the proposed algorithm. The parameters for
the road surface estimation are L = 100 and ς = 0.68. In the case of the scan-
ning, we have used the non-uniform scheme with τ = 90 sampling points, κ = 0.5
and λ = 0.25. The scanning in the XC axis is made in XC = {−10, .., 10}m
with a stride of 0.075m. For each selected window, 10 different sizes are tested
(the smallest 0.75 × 1.5m and the biggest 0.95 × 1.8m). The algorithm selects
about 50 000 windows, which is a reduction of about 75 − 90% with respect to
the sliding window, depending on the stride of this latter. Then, we apply the
filtering stage with a cell size of σ = 0.2 and χ = 2000, reducing again a 90%
the number of candidates. This represents a reduction of 97−99% compared to
the sliding window. Figure 9 illustrates the results in six of the frames used to
test the algorithm. As can be seen, the pedestrians in the scenario are correctly
selected as candidates, while other free-space areas are discarded to be classified.
In addition, attending to the results, the number of false negatives is marginal,
which is a key factor for the whole sytem performance.
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Figure 8: Stereo pair used in our acquisition system.

7 Conclusions

We have presented a three-stage candidate generation algorithm to be used in
the foreground segmentation module of a PPS. The stages consist of road surface
estimation, road scanning and candidate filtering. Experimental results demon-
strate that the number of candidates to be sent to the classifier can be reduced
by a 97−99% compared to the typical sliding window approach, while minimiz-
ing the number of false negatives to around 0%. Future work will be focused on
the research of algorithms to fuse the cues used to select the candidates, which
can potentially improve the proposed pipeline process.
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Figure 9: Experimental results. The left column shows the original real urban
frames in which the proposed algorithm is applied. The middle column corre-
sponds to the final windows after the filtering step. The right column shows the
number of windows generated after the scanning (Gen) and after the filtering
(Final). In order to enhance the visualization the different scales tested for each
sampling point are not shown, so just one candidate per point was drawn.
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