toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher (down) IEEE Place of Publication Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
 

 
Author Maria Salamo; Sergio Escalera edit  doi
openurl 
  Title Increasing Retrieval Quality in Conversational Recommenders Type Journal Article
  Year 2011 Publication IEEE Transactions on Knowledge and Data Engineering Abbreviated Journal TKDE  
  Volume 99 Issue Pages 1-1  
  Keywords  
  Abstract IF JCR CCIA 2.286 2009 24/103
JCR Impact Factor 2010: 1.851
A major task of research in conversational recommender systems is personalization. Critiquing is a common and powerful form of feedback, where a user can express her feature preferences by applying a series of directional critiques over the recommendations instead of providing specific preference values. Incremental Critiquing is a conversational recommender system that uses critiquing as a feedback to efficiently personalize products. The expectation is that in each cycle the system retrieves the products that best satisfy the user’s soft product preferences from a minimal information input. In this paper, we present a novel technique that increases retrieval quality based on a combination of compatibility and similarity scores. Under the hypothesis that a user learns Turing the recommendation process, we propose two novel exponential reinforcement learning approaches for compatibility that take into account both the instant at which the user makes a critique and the number of satisfied critiques. Moreover, we consider that the impact of features on the similarity differs according to the preferences manifested by the user. We propose a global weighting approach that uses a common weight for nearest cases in order to focus on groups of relevant products. We show that our methodology significantly improves recommendation efficiency in four data sets of different sizes in terms of session length in comparison with state-of-the-art approaches. Moreover, our recommender shows higher robustness against noisy user data when compared to classical approaches
 
  Address  
  Corporate Author Thesis  
  Publisher (down) IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1041-4347 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA Approved no  
  Call Number Admin @ si @ SaE2011 Serial 1713  
Permanent link to this record
 

 
Author Sergio Escalera; David Masip; Eloi Puertas; Petia Radeva; Oriol Pujol edit  doi
openurl 
  Title Online Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 32 Issue 3 Pages 458-467  
  Keywords  
  Abstract IF JCR CCIA 1.303 2009 54/103
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem independent codings one-versus-all and one-versus-one is introduced. Furthermore, two new codings are proposed, unbalanced online ECOC and a problem dependent online ECOC. This last online coding technique takes advantage of the problem data for minimizing the number of dichotomizers used in the ECOC framework while preserving a high accuracy. These techniques are validated on an online setting of 11 data sets from UCI database and applied to two real machine vision applications: traffic sign recognition and face recognition. As a result, the online ECOC techniques proposed provide a feasible and robust way for handling new classes using any base classifier.
 
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication North Holland Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ EMP2011 Serial 1714  
Permanent link to this record
 

 
Author Carles Fernandez; Pau Baiget; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Determining the Best Suited Semantic Events for Cognitive Surveillance Type Journal Article
  Year 2011 Publication Expert Systems with Applications Abbreviated Journal EXSY  
  Volume 38 Issue 4 Pages 4068–4079  
  Keywords Cognitive surveillance; Event modeling; Content-based video retrieval; Ontologies; Advanced user interfaces  
  Abstract State-of-the-art systems on cognitive surveillance identify and describe complex events in selected domains, thus providing end-users with tools to easily access the contents of massive video footage. Nevertheless, as the complexity of events increases in semantics and the types of indoor/outdoor scenarios diversify, it becomes difficult to assess which events describe better the scene, and how to model them at a pixel level to fulfill natural language requests. We present an ontology-based methodology that guides the identification, step-by-step modeling, and generalization of the most relevant events to a specific domain. Our approach considers three steps: (1) end-users provide textual evidence from surveilled video sequences; (2) transcriptions are analyzed top-down to build the knowledge bases for event description; and (3) the obtained models are used to generalize event detection to different image sequences from the surveillance domain. This framework produces user-oriented knowledge that improves on existing advanced interfaces for video indexing and retrieval, by determining the best suited events for video understanding according to end-users. We have conducted experiments with outdoor and indoor scenes showing thefts, chases, and vandalism, demonstrating the feasibility and generalization of this proposal.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ FBR2011a Serial 1722  
Permanent link to this record
 

 
Author Carles Fernandez; Pau Baiget; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Augmenting Video Surveillance Footage with Virtual Agents for Incremental Event Evaluation Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 32 Issue 6 Pages 878–889  
  Keywords  
  Abstract The fields of segmentation, tracking and behavior analysis demand for challenging video resources to test, in a scalable manner, complex scenarios like crowded environments or scenes with high semantics. Nevertheless, existing public databases cannot scale the presence of appearing agents, which would be useful to study long-term occlusions and crowds. Moreover, creating these resources is expensive and often too particularized to specific needs. We propose an augmented reality framework to increase the complexity of image sequences in terms of occlusions and crowds, in a scalable and controllable manner. Existing datasets can be increased with augmented sequences containing virtual agents. Such sequences are automatically annotated, thus facilitating evaluation in terms of segmentation, tracking, and behavior recognition. In order to easily specify the desired contents, we propose a natural language interface to convert input sentences into virtual agent behaviors. Experimental tests and validation in indoor, street, and soccer environments are provided to show the feasibility of the proposed approach in terms of robustness, scalability, and semantics.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ FBR2011b Serial 1723  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Sergio Escalera; Xavier Baro; Petia Radeva; Jordi Vitria; Oriol Pujol edit  doi
openurl 
  Title Minimal Design of Error-Correcting Output Codes Type Journal Article
  Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 33 Issue 6 Pages 693-702  
  Keywords Multi-class classification; Error-correcting output codes; Ensemble of classifiers  
  Abstract IF JCR CCIA 1.303 2009 54/103
The classification of large number of object categories is a challenging trend in the pattern recognition field. In literature, this is often addressed using an ensemble of classifiers. In this scope, the Error-correcting output codes framework has demonstrated to be a powerful tool for combining classifiers. However, most state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a minimal design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best minimal ECOC code configuration. The results over several public UCI datasets and different multi-class computer vision problems show that the proposed methodology obtains comparable (even better) results than state-of-the-art ECOC methodologies with far less number of dichotomizers.
 
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; OR;HuPBA;MV Approved no  
  Call Number Admin @ si @ BEB2011a Serial 1800  
Permanent link to this record
 

 
Author Carlo Gatta; Eloi Puertas; Oriol Pujol edit  doi
openurl 
  Title Multi-Scale Stacked Sequential Learning Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 10-11 Pages 2414-2416  
  Keywords Stacked sequential learning; Multiscale; Multiresolution; Contextual classification  
  Abstract One of the most widely used assumptions in supervised learning is that data is independent and identically distributed. This assumption does not hold true in many real cases. Sequential learning is the discipline of machine learning that deals with dependent data such that neighboring examples exhibit some kind of relationship. In the literature, there are different approaches that try to capture and exploit this correlation, by means of different methodologies. In this paper we focus on meta-learning strategies and, in particular, the stacked sequential learning approach. The main contribution of this work is two-fold: first, we generalize the stacked sequential learning. This generalization reflects the key role of neighboring interactions modeling. Second, we propose an effective and efficient way of capturing and exploiting sequential correlations that takes into account long-range interactions by means of a multi-scale pyramidal decomposition of the predicted labels. Additionally, this new method subsumes the standard stacked sequential learning approach. We tested the proposed method on two different classification tasks: text lines classification in a FAQ data set and image classification. Results on these tasks clearly show that our approach outperforms the standard stacked sequential learning. Moreover, we show that the proposed method allows to control the trade-off between the detail and the desired range of the interactions.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ GPP2011 Serial 1802  
Permanent link to this record
 

 
Author Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title Visual Gamma Correction for LCD Displays Type Journal Article
  Year 2011 Publication Displays Abbreviated Journal DIS  
  Volume 32 Issue 1 Pages 17-23  
  Keywords Display calibration; Psychophysics ; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract An improved method for visual gamma correction is developed for LCD displays to increase the accuracy of digital colour reproduction. Rather than utilising a photometric measurement device, we use observ- ers’ visual luminance judgements for gamma correction. Eight half tone patterns were designed to gen- erate relative luminances from 1/9 to 8/9 for each colour channel. A psychophysical experiment was conducted on an LCD display to find the digital signals corresponding to each relative luminance by visually matching the half-tone background to a uniform colour patch. Both inter- and intra-observer vari- ability for the eight luminance matches in each channel were assessed and the luminance matches proved to be consistent across observers (DE00 < 3.5) and repeatable (DE00 < 2.2). Based on the individual observer judgements, the display opto-electronic transfer function (OETF) was estimated by using either a 3rd order polynomial regression or linear interpolation for each colour channel. The performance of the proposed method is evaluated by predicting the CIE tristimulus values of a set of coloured patches (using the observer-based OETFs) and comparing them to the expected CIE tristimulus values (using the OETF obtained from spectro-radiometric luminance measurements). The resulting colour differences range from 2 to 4.6 DE00. We conclude that this observer-based method of visual gamma correction is useful to estimate the OETF for LCD displays. Its major advantage is that no particular functional relationship between digital inputs and luminance outputs has to be assumed.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ XFK2011 Serial 1815  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
openurl 
  Title Document Seal Detection Using Ght and Character Proximity Graphs Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 6 Pages 1282-1295  
  Keywords Seal recognition; Graphical symbol spotting; Generalized Hough transform; Multi-oriented character recognition  
  Abstract This paper deals with automatic detection of seal (stamp) from documents with cluttered background. Seal detection involves a difficult challenge due to its multi-oriented nature, arbitrary shape, overlapping of its part with signature, noise, etc. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors computed from recognition result of individual connected components (characters). Scale and rotation invariant features are used in a Support Vector Machine (SVM) classifier to recognize multi-scale and multi-oriented text characters. The concept of generalized Hough transform (GHT) is used to detect the seal and a voting scheme is designed for finding possible location of the seal in a document based on the spatial feature descriptor of neighboring component pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal in a document. Experiment is performed in an archive of historical documents of handwritten/printed English text. Experimental results show that the method is robust in locating seal instances of arbitrary shape and orientation in documents, and also efficient in indexing a collection of documents for retrieval purposes.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2011 Serial 1820  
Permanent link to this record
 

 
Author Javier Vazquez edit  openurl
  Title Colour Constancy in Natural Through Colour Naming and Sensor Sharpening Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Graham D. Finlayson  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Vaz2011a Serial 1785  
Permanent link to this record
 

 
Author Jaime Moreno edit  url
isbn  openurl
  Title Perceptual Criteria on Image Compresions Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Nowadays, digital images are used in many areas in everyday life, but they tend to be big. This increases amount of information leads us to the problem of image data storage. For example, it is common to have a representation a color pixel as a 24-bit number, where the channels red, green, and blue employ 8 bits each. In consequence, this kind of color pixel can specify one of 224 ¼ 16:78 million colors. Therefore, an image at a resolution of 512 £ 512 that allocates 24 bits per pixel, occupies 786,432 bytes. That is why image compression is important. An important feature of image compression is that it can be lossy or lossless. A compressed image is acceptable provided these losses of image information are not perceived by the eye. It is possible to assume that a portion of this information is redundant. Lossless Image Compression is defined as to mathematically decode the same image which was encoded. In Lossy Image Compression needs to identify two features inside the image: the redundancy and the irrelevancy of information. Thus, lossy compression modifies the image data in such a way when they are encoded and decoded, the recovered image is similar enough to the original one. How similar is the recovered image in comparison to the original image is defined prior to the compression process, and it depends on the implementation to be performed. In lossy compression, current image compression schemes remove information considered irrelevant by using mathematical criteria. One of the problems of these schemes is that although the numerical quality of the compressed image is low, it shows a high visual image quality, e.g. it does not show a lot of visible artifacts. It is because these mathematical criteria, used to remove information, do not take into account if the viewed information is perceived by the Human Visual System. Therefore, the aim of an image compression scheme designed to obtain images that do not show artifacts although their numerical quality can be low, is to eliminate the information that is not visible by the Human Visual System. Hence, this Ph.D. thesis proposes to exploit the visual redundancy existing in an image by reducing those features that can be unperceivable for the Human Visual System. First, we define an image quality assessment, which is highly correlated with the psychophysical experiments performed by human observers. The proposed CwPSNR metrics weights the well-known PSNR by using a particular perceptual low level model of the Human Visual System, e.g. the Chromatic Induction Wavelet Model (CIWaM). Second, we propose an image compression algorithm (called Hi-SET), which exploits the high correlation and self-similarity of pixels in a given area or neighborhood by means of a fractal function. Hi-SET possesses the main features that modern image compressors have, that is, it is an embedded coder, which allows a progressive transmission. Third, we propose a perceptual quantizer (½SQ), which is a modification of the uniform scalar quantizer. The ½SQ is applied to a pixel set in a certain Wavelet sub-band, that is, a global quantization. Unlike this, the proposed modification allows to perform a local pixel-by-pixel forward and inverse quantization, introducing into this process a perceptual distortion which depends on the surround spatial information of the pixel. Combining ½SQ method with the Hi-SET image compressor, we define a perceptual image compressor, called ©SET. Finally, a coding method for Region of Interest areas is presented, ½GBbBShift, which perceptually weights pixels into these areas and maintains only the more important perceivable features in the rest of the image. Results presented in this report show that CwPSNR is the best-ranked image quality method when it is applied to the most common image compression distortions such as JPEG and JPEG2000. CwPSNR shows the best correlation with the judgement of human observers, which is based on the results of psychophysical experiments obtained for relevant image quality databases such as TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains better results both for compression ratios and perceptual image quality than the JPEG2000 coder and other coders that use a Hilbert Fractal for image compression. Hence, when the proposed perceptual quantization is introduced to Hi-SET coder, our compressor improves its numerical and perceptual e±ciency. When ½GBbBShift method applied to Hi-SET is compared against MaxShift method applied to the JPEG2000 standard and Hi-SET, the images coded by our ROI method get the best results when the overall image quality is estimated. Both the proposed perceptual quantization and the ½GBbBShift method are generalized algorithms that can be applied to other Wavelet based image compression algorithms such as JPEG2000, SPIHT or SPECK.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-938351-3-2 Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Mor2011 Serial 1786  
Permanent link to this record
 

 
Author Ferran Diego edit  openurl
  Title Probabilistic Alignment of Video Sequences Recorded by Moving Cameras Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Video alignment consists of integrating multiple video sequences recorded independently into a single video sequence. This means to register both in time (synchronize
frames) and space (image registration) so that the two videos sequences can be fused
or compared pixel–wise. In spite of being relatively unknown, many applications today may benefit from the availability of robust and efficient video alignment methods.
For instance, video surveillance requires to integrate video sequences that are recorded
of the same scene at different times in order to detect changes. The problem of aligning videos has been addressed before, but in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, most works rely
on restrictive assumptions which reduce its difficulty such as linear time correspondence or the knowledge of the complete trajectories of corresponding scene points on the images; to some extent, these assumptions limit the practical applicability of the solutions developed until now. In this thesis, we focus on the challenging problem of aligning sequences recorded at different times from independent moving cameras following similar but not coincident trajectories. More precisely, this thesis covers four studies that advance the state-of-the-art in video alignment. First, we focus on analyzing and developing a probabilistic framework for video alignment, that is, a principled way to integrate multiple observations and prior information. In this way, two different approaches are presented to exploit the combination of several purely visual features (image–intensities, visual words and dense motion field descriptor), and
global positioning system (GPS) information. Second, we focus on reformulating the
problem into a single alignment framework since previous works on video alignment
adopt a divide–and–conquer strategy, i.e., first solve the synchronization, and then
register corresponding frames. This also generalizes the ’classic’ case of fixed geometric transform and linear time mapping. Third, we focus on exploiting directly the
time domain of the video sequences in order to avoid exhaustive cross–frame search.
This provides relevant information used for learning the temporal mapping between
pairs of video sequences. Finally, we focus on adapting these methods to the on–line
setting for road detection and vehicle geolocation. The qualitative and quantitative
results presented in this thesis on a variety of real–world pairs of video sequences show that the proposed method is: robust to varying imaging conditions, different image
content (e.g., incoming and outgoing vehicles), variations on camera velocity, and
different scenarios (indoor and outdoor) going beyond the state–of–the–art. Moreover, the on–line video alignment has been successfully applied for road detection and
vehicle geolocation achieving promising results.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Joan Serrat  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Die2011 Serial 1787  
Permanent link to this record
 

 
Author Santiago Segui edit  openurl
  Title Contributions to the Diagnosis of Intestinal Motility by Automatic Image Analysis Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In the early twenty first century Given Imaging Ltd. presented wireless capsule endoscopy (WCE) as a new technological breakthrough that allowed the visualization of
the intestine by using a small, swallowed camera. This small size device was received
with a high enthusiasm within the medical community, and until now, it is still one
of the medical devices with the highest use growth rate. WCE can be used as a novel
diagnostic tool that presents several clinical advantages, since it is non-invasive and
at the same time it provides, for the first time, a full picture of the small bowel morphology, contents and dynamics. Since its appearance, the WCE has been used to
detect several intestinal dysfunctions such as: polyps, ulcers and bleeding. However,
the visual analysis of WCE videos presents an important drawback: the long time
required by the physicians for proper video visualization. In this sense and regarding
to this limitation, the development of computer aided systems is required for the extensive use of WCE in the medical community.
The work presented in this thesis is a set of contributions for the automatic image
analysis and computer-aided diagnosis of intestinal motility disorders using WCE.
Until now, the diagnosis of small bowel motility dysfunctions was basically performed
by invasive techniques such as the manometry test, which can only be conducted at
some referral centers around the world owing to the complexity of the procedure and
the medial expertise required in the interpretation of the results.
Our contributions are divided in three main blocks:
1. Image analysis by computer vision techniques to detect events in the endoluminal WCE scene. Several methods have been proposed to detect visual events
such as: intestinal contractions, intestinal content, tunnel and wrinkles;
2. Machine learning techniques for the analysis and the manipulation of the data
from WCE. These methods have been proposed in order to overcome the problems that the analysis of WCE presents such as: video acquisition cost, unlabeled data and large number of data;
3. Two different systems for the computer-aided diagnosis of intestinal motility
disorders using WCE. The first system presents a fully automatic method that
aids at discriminating healthy subjects from patients with severe intestinal motor disorders like pseudo-obstruction or food intolerance. The second system presents another automatic method that models healthy subjects and discriminate them from mild intestinal motility patients.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Jordi Vitria  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Seg2011 Serial 1836  
Permanent link to this record
 

 
Author Pierluigi Casale edit  openurl
  Title Approximate Ensemble Methods for Physical Activity Recognition Applications Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The main interest of this thesis focuses on computational methodologies able to
reduce the degree of complexity of learning algorithms and its application to physical
activity recognition.
Random Projections will be used to reduce the computational complexity in Multiple Classifier Systems. A new boosting algorithm and a new one-class classification
methodology have been developed. In both cases, random projections are used for
reducing the dimensionality of the problem and for generating diversity, exploiting in
this way the benefits that ensembles of classifiers provide in terms of performances
and stability. Moreover, the new one-class classification methodology, based on an ensemble strategy able to approximate a multidimensional convex-hull, has been proved
to over-perform state-of-the-art one-class classification methodologies.
The practical focus of the thesis is towards Physical Activity Recognition. A new
hardware platform for wearable computing application has been developed and used
for collecting data of activities of daily living allowing to study the optimal features
set able to successful classify activities.
Based on the classification methodologies developed and the study conducted on
physical activity classification, a machine learning architecture capable to provide a
continuous authentication mechanism for mobile-devices users has been worked out,
as last part of the thesis. The system, based on a personalized classifier, states on
the analysis of the characteristic gait patterns typical of each individual ensuring an
unobtrusive and continuous authentication mechanism
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Oriol Pujol;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Cas2011 Serial 1837  
Permanent link to this record
 

 
Author Naila Murray; Sandra Skaff; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
  Title Towards Automatic Concept Transfer Type Conference Article
  Year 2011 Publication Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering Abbreviated Journal  
  Volume Issue Pages 167.176  
  Keywords chromatic modeling, color concepts, color transfer, concept transfer  
  Abstract This paper introduces a novel approach to automatic concept transfer; examples of concepts are “romantic”, “earthy”, and “luscious”. The approach modifies the color content of an input image given only a concept specified by a user in natural language, thereby requiring minimal user input. This approach is particularly useful for users who are aware of the message they wish to convey in the transferred image while being unsure of the color combination needed to achieve the corresponding transfer. The user may adjust the intensity level of the concept transfer to his/her liking with a single parameter. The proposed approach uses a convex clustering algorithm, with a novel pruning mechanism, to automatically set the complexity of models of chromatic content. It also uses the Earth-Mover's Distance to compute a mapping between the models of the input image and the target chromatic concept. Results show that our approach yields transferred images which effectively represent concepts, as confirmed by a user study.  
  Address  
  Corporate Author Thesis  
  Publisher (down) ACM Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-0907-3 Medium  
  Area Expedition Conference NPAR  
  Notes CIC Approved no  
  Call Number Admin @ si @ MSM2011 Serial 1866  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: