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Abstract

The fields of segmentation, tracking and behavior analysis demand for chal-
lenging video resources to test, in a scalable manner, complex scenarios like
crowded environments or scenes with high semantics. Nevertheless, exist-
ing public databases cannot scale the presence of appearing agents, which
would be useful to study long-term occlusions and crowds. Moreover, creat-
ing these resources is expensive and often too particularized to specific needs.
We propose an augmented reality framework to increase the complexity of
image sequences in terms of occlusions and crowds, in a scalable and control-
lable manner. Existing datasets can be increased with augmented sequences
containing virtual agents. Such sequences are automatically annotated, thus
facilitating evaluation in terms of segmentation, tracking, and behavior recog-
nition. In order to easily specify the desired contents, we propose a natural
language interface to convert input sentences into virtual agent behaviors.
Experimental tests and validation in indoor, street, and soccer environments
are provided to show the feasibility of the proposed approach in terms of
robustness, scalability, and semantics.

Keywords: human behavior analysis, smart video surveillance,
benchmarking, ontologies

1. Introduction

Evaluating human activities in image sequences is commonly required
by applications seeking to recognize and understand video events, such as
surveillance, automatic retrieval of video content, and advanced human-
computer interfaces. Specifically, it is desirable to account for occurrences
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observed in localized areas of interest, and to a feasible extent, identify arbi-
trarily complex behaviors. Such a high-level evaluation requires prior steps
of segmentation and tracking, which have been intensively researched during
the last years. Given the great number of available alternatives, there exists
an increasing need to compare and evaluate performance on such systems.

The field of tracking evaluation assesses the capability of trackers to es-
timate the location of moving agents over time in image sequences, under
different environmental conditions. A considerably large number of datasets
have been published to provide researchers with standardized sequences, in
order to evaluate and compare tracking approaches. Some datasets for the
field of event/activity recognition include the CLEAR dataset [1], the ViSOR
project [2], the BEHAVE interactions test case scenarios 1, the CAVIAR test
case scenarios 2, the HumanEva dataset 3, or the VS-PETS benchmark data 4.

Nevertheless, since the construction of datasets is invariably sequence-
oriented, these repositories often aim to solve specific difficulties in fixed
contexts, sometimes resulting on an overadaptation of trackers to the scenes.
Thus, it becomes difficult to compare two different image sequences in terms
of tracking complexity. Moreover, new recordings, even from the same sce-
nario, are exposed to different conditions due to changes of illumination,
weather, or configuration of the scenario. To avoid the effort-consuming and
not fully controllable task of acquiring new sequences for tracking evalua-
tion, we propose instead to incorporate virtual agents and objects to already
recorded scenes, which allow us to scale at will the complexity of a scene
–e.g., occlusions, crowds, splitting/merging–.

This paper contributes with a tool that increases the complexity of image
sequences in terms of occlusions and crowds, in an scalable and controllable
manner. To avoid having to deal with computer graphics techniques, a nat-
ural language interface allows testers to easily incorporate virtual agents to
the recorded scenes and control their developments from high-level. This
will require (i) having the occlusions automatically handled by a scene com-
position task; (ii) having virtual agents develop their instructed activities
while reacting to events in the original recording; and (iii) having precise
ground truth available to evaluate segmentation and tracking processes, i.e.,

1http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
3http://vision.cs.brown.edu/humaneva/index.html
4http://www.cvg.rdg.ac.uk/PETS2006/data.html
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Figure 1: Modular diagram of the components involved in the presented framework.

the silhouettes, trajectories, and high-level behaviors of the synthetic agents.
Considering the features listed above, the proposed system extends and

enhances the architecture described in [3] to facilitate the test and refinement
of modules devoted to activity analysis from image sequences. Research in
this area can benefit from a unified methodology to test or compare the
performance and range of the algorithms in a controllable manner.

The presented system follows the architecture shown in Fig. 1, which
includes three main modules and a series of a priori models. This frame-
work builds upon the fields of computer vision, knowledge representation,
computational linguistics, and computer graphics; similar inter-field collab-
orations are reviewed in Section 2. Section 3 discusses the representation of
spatiotemporal knowledge undertaken by the system by means of an ontol-
ogy. After that, sections 4 and 5 present the tasks for interpretation and
annotation of behavior and virtual agent modeling for scene augmentation,
respectively. Section 6 shows experimental results and evaluation with aug-
mented scenes in indoor, street, and sports environments, validated in terms
of segmentation, tracking, and event recognition. Finally, section 7 draws
the concluding remarks. Since the natural language understanding task is
not directly linked to the aim of the paper, a brief description of this module
is included as an appendix at the end of the document.

2. Related work

Our framework aims at augmenting sequences with synthetic data, by
accomplishing several tasks: implementation of ontological schemes, recogni-
tion of human activity and interactions in image sequences, interpretation of
whole scene situations, and generation of linguistic descriptions. Regarding
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the main goal, similar techniques use synthetic data towards scene augmen-
tation [4, 5, 6]. Nevertheless, although these approaches permit users to scale
the scene in terms of number of simultaneous tracks, and evaluate tracking
and fixation capabilities, they do not consider adding complex behaviors for
the virtual agents, and do not evaluate the performance at a scene interpre-
tation level. We especially aim at this level of evaluation.

Ontology schemes have also been used in the literature for the representa-
tion of video events, for example [7, 8]. The ontology proposed in this paper
presents novelty in the distribution of video events, ranging from metric-
temporal events –i.e., basic events with no complexity, and simply linked to
movement or pose recognition– to events involving multiple agents/objects
and requiring complex interpretations. As shown, this structure distributes
adequately the knowledge processing to different modules and makes the
annotation task easier.

Identifying human activities in image sequences requires to build proper
behavior models that can be easily associated to observations obtained from
tracking systems. A large variety of such approaches exist in the literature.
On the one hand, several approaches use probabilistic models to generate
behavior patterns. Hidden Markov Models [9] and several variants [10, 11]
have been studied in the last years, showing reasonable performance in se-
lected environments. In [12], Buxton reviews progress in generative models
for advanced Cognitive Vision Systems (CVS) to explain activities in dy-
namic scenes, observing applications such as education, smart rooms, and
also surveillance systems. Kojima et al. report some approaches based on
concept hierarchies of actions to recognize interesting elements and develop-
ments in a scene, particularly people and object interactions [13].

The study of interactions among moving objects is faced using statistical
approaches for high-level attention and control. Most approaches do not em-
phasize the contextual properties of analyzed behaviors; instead, we define an
independent stage to analyze the evolution of situations and their contextu-
alization. Another modeling paradigm tries to automatically learn behavior
models based on properties of specific regions of the scenario [14, 15, 16].
Nevertheless, learning methods do not address the conceptual ambiguity be-
tween the image sequence and its possible interpretations.

Scene interpretation is traditionally achieved by top-down methods, which
make use of prior semantic knowledge to construct the behavior models.
However, such methods usually depend on the scenario and on the expertise
of the human designer. A behavior recognition framework is proposed by
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Brémond et al [17]: for each tracked actor, the behavior recognition module
performs three levels of reasoning, viz states, events, and scenarios. An early
conception of artificial CVS was introduced by Nagel [18], who has actively
investigated for decades the field of CVS and Image Sequence Evaluation
applied to vehicular traffic surveillance [19]. He tackles the high-level analy-
sis of visual occurrences using fuzzy logic inference engines, and derives the
results to the generation of NL textual descriptions. Recently, Gonzàlez ap-
plied this architecture to enlarge the domain of a CVS towards the analysis of
general human behaviors in image sequences, in what has been called Human
Sequence Evaluation (HSE) [20]. Our proposed system builds upon the HSE
scheme, where information flows between the lowest levels, image acquisition
and segmentation, and the highest ones, NL interactions with end-users.

Several contributions also propose NL interfaces to affect the behavior of
virtual agents, to let humans interact with smart environments, or to cre-
ate augmented reality scenes. For example, [21] introduces an architecture
to allow external users to input immediate or persistent instructions using
natural language, and see the agents’ resulting behavioral changes in the
graphical output of the simulation. [22] discusses the modeling and simu-
lation of interacting participants in virtual meeting rooms and smart home
environments, using multi-modal capturing techniques that include verbal
instructions. [23] describes an Augmented Reality (AR) multimodal inter-
face that allows users to arrange virtual furniture in a virtual room, using a
combination of speech and gestures from a real paddle.

Douze et al. [24] have recently joined computer vision techniques with
AR, where moving targets are tracked from image sequences and merged
into other real or virtual environments. Nevertheless, the method does not
consider the animation of behavioral virtual agents in the resulting sequence.
Klein and Murray [25] adapt SLAM algorithms developed for robotic explo-
ration into AR: using images from calibrated hand-held cameras, they collect
thousands of feature points used to estimate a dominant ground-plane. This
information permits them to add behavioral virtual objects over the ground-
plane. The method keeps a correct estimation of the ground-plane as the
camera moves, thereby maintaining a consistent existence of virtual objects
in the image sequence.

Next section starts the description of our framework, by detailing the
organization of the semantic knowledge involved.
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Table 1: Sample concepts from the situation/event taxonomy of the ontology.

3. Spatiotemporal and semantic knowledge

When structuring the semantic concepts required for the interpretation of
occurrences, we use event concepts as central elements from which to build
the rest of the knowledge resources. These events are organized linearly,
ranging from basic actions identified by vision processes –e.g., an agent ap-
pears, moves fast, sits down–, to uncertain, intentional knowledge based on
high-level behaviors –e.g., a group of people talks friendly; a soccer player
scores after receiving the ball–. The set of events is organized as the central
taxonomy of the ontology in our system; a significative set of these concepts
can be found in Table 1.

Other concepts related to the events, such as the possible types of agents
or objects participating in the occurrences, or the locations where these are
developed, are included into the ontology in additional taxonomies. We link
situations to the rest of the concepts by means of ontological constraints
that restrict the validity of the situations to the specific domain. For in-
stance, the situation use vending machine requires a person to be at a par-
ticular location (vending machine), so it is modeled with two constraints:
is agent(pedestrian) and is at location(pedestrian, vending machine). In the
case of a chase, we need at least an agent and a patient: is agent(pedestrian),
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Entity Entity instance

Pedestrian ped2
Vehicle veh1
Location sidewalk
Object obj1
Descriptor fast

=⇒

Event type Event instance

Spatiotemporal walk (ped2, fast)
Interaction appear (ped2, sidewalk)
Interaction pick up (ped2, obj1)
Interpretation theft (ped2, ped1, obj1)
Interpretation danger of runover (veh1, ped2)

Table 2: Possible instances of entities (left) used in event indexes (right). For a theft to
be indexed, ped2, ped1, and obj1 must accomplish a certain semantic context.

is patient(pedestrian). These hierarchies of concepts and their constraints
conform the terminological part of the ontology.

Apart from the concepts, the ontology also stores the instances of con-
cepts that have been detected in the scene, i.e., information regarding the
world state and the individuals existing on it. Once the abstract events,
constraints, and entities are satisfied for a certain world state, these con-
cepts are instantiated as event instances, constraint instances, and entity
instances, respectively. For example, for the theft event instance in Table 2,
the constraint instances required by the ontology are a thief, is agent(ped2);
a victim, is patient(ped1); and a stolen item, has object(obj1). Keeping track
of the instances is mandatory for the NL understanding task, to identify
references to the agents involved in the scene.

4. Interpretation and annotation of behaviors

The intelligent management of situations builds upon an complete and
detailed knowledge of particular scenarios, in order to facilitate complex se-
mantic explanations that are valid in concrete domains. Inspecting a variety
of different discourse domains we observe a series of characteristics:

1. Temporal discontinuity : The spatiotemporal data observed in time-
variant scenes is valid only during limited intervals of time.

2. Sensory gap: Estimating quantitative values from observed image se-
quences involves uncertainty.

3. Semantic gap: More uncertainty is included from associating concep-
tual attributes to geometric quantities, for example abnormal behavior
speed, due to the inherent vagueness of many terms.
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Figure 2: Scheme of the interpreter module. This module conceptualizes new motion data,
identifies events using a priori models, and carries out a situational analysis.

The vision algorithms applied continuously over the recordings produce
an extensive amount of geometric data. A process of abstraction is per-
formed in order to extract and manage the relevant knowledge derived from
the tracking processes, see [26] for additional information. This knowledge
is provided in form of spatiotemporal predicates expressing uniquely basic
spatiotemporal developments. They facilitate a schematic conceptual repre-
sentation of knowledge which is time-indexed and incorporates uncertainty.

Hence, in addition to the prior knowledge of the locations, it is desirable
to find a conceptual framework that exploits these additional particularities
of the data. A convenient solution to address these issues is to represent
quantitative knowledge by means of fuzzy logic predicates. To this end, we
use the Fuzzy Metric-Temporal Logic (FMTL) formalism [27], which consists
of a rule-based inference engine in which conventional logic formalisms are
extended by a fuzzy and a temporal components. In terms of notation,
FMTL is similar to the well-known reasoning engine PROLOG [28]. However,
the temporal and spatial components of FMTL make it a suitable tool to
represent observed events in image sequences.

Nevertheless, some guidelines are needed to establish more complex rela-
tions of cause, effect, precedence, grouping, interaction, and in general any
reasoning performed with time-constrained information at multiple levels of
analysis. We use the high-level conceptual predicates defined in the on-
tology to express semantic relations among entities, at a higher level than
metric-temporal relations. The tool which has been chosen to enable behav-
ior modeling, recognition, and synthesis of such predicates is the Situation
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Graph Tree (SGT), see [19, 20]. The SGT is a hierarchical classification tool
used to describe behavioral activity of agents in terms of situations they can
be in. These trees contain a priori knowledge about the admissible sequences
of occurrences in a defined domain.

The semantic knowledge related to an agent at a given point of time is
contained in a series of situations [18], the nodes of the hierarchical graph,
see Fig. 3. Each situation evaluates a set of conditions in form of FMTL
predicates, and reacts generating a new predicate once all the conditions are
asserted. This new predicate varies according to the application: for event
recognition, it is a high-level interpretation of the asserted situation, e.g., an
agent crosses the street or steals an object to another agent ; for virtual agent
generation, it is a response action, e.g., stop if a car is crossing.

Each modeled situation is distributed along the tree-like structure of an
SGT by means of the particularization, prediction, and self-prediction edges.
Particularization edges instantiate more specific situations when certain con-
ditions are accomplished. Prediction edges inform about the following ad-
missible states within a situation graph from a given state, including the
maintenance of the current state by means of self-prediction edges. The con-
junction of these edges allows experts to define a map of admissible paths
through the set of accepted situations. An example of SGT for basic com-
mentation of soccer matches is shown in Fig. 3.

SGTs recognize the instantiated situations of an observed agent by ap-
plying a graph traversal. The goal of the traversal is to determine the most
particular situation that can be instantiated by considering the collection of
asserted FMTL predicates at each time step. These predicates are generated
as a fuzzy discretization of the spatiotemporal data acquired by the tracking
systems. The traversal of the SGT is applied by considering the knowledge
encoded in the form of prediction and particularization edges. Fig. 2 depicts
the interaction between the SGT and the fuzzy reasoner; a deeper explana-
tion is detailed in [29].

The reaction predicates are notes describing the content of the situations,
one per time-step, as a result of the continuous evaluation of the SGT. Persis-
tent notes are finally grouped along the temporal interval in which they have
been a constant output. As a result, the whole sequence is split in cohesive
time-intervals defined by the start of each semantic tag. Thus, we obtain
sequences of interpretations (event recognition) and virtual agent reactive
behaviors (scene augmentation) from tracked data.
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Figure 3: This SGT is evaluated to perform as a virtual commentator for soccer. When a
set of conditions applies, its note reaction predicate generates a semantic annotation.

5. Virtual agent modeling

Predicates are obtained from NLU as explained in Appendix A. In
essence, they represent goals to be reached by some virtual entity in the
scenario. To accomplish this task, we adapt the FMTL + SGT framework
presented in Section 4 towards the creation of synthetic instances of agent
trajectories. As explained before, the SGT is evaluated given the quantitative
information obtained from tracking at each frame step, which instantiates sit-
uations and raises reactions, like the annotations of observed behavior already
described. Here, on the other hand, these reactions are used to produce syn-
thetic behaviors. Given an initial configuration of a virtual agent, the system
recursively generates the activities for the agent within its context.

Generating synthetic trajectories requires adapting prior knowledge from
Table 1, initially designed for behavior recognition. Thus, each virtual agent
behavior is modeled using three different generation processes, according to
the level of abstraction: action (walk, bend), contextualized events (going to
vending machine, accelerating), and behavior (entering a crosswalk).
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Figure 4: (a) Generic human body model represented using a stick figure similar to [30],
here composed of twelve limbs and fifteen joints. (b) Different human models performing
dancing and running actions.

5.1. Virtual action

A human action is defined as a discrete sequence of movements of body
parts. In this work we use a human model based on the stick figure, see
Fig. 4. The learned sequence of movements for a particular action is called
the prototypical action or p–action, defined as a cubic spline in a PCA space,
where each point p ∈ [0, 1] corresponds to the mean postures of several
performances, see Fig. 5. Using p–actions, we can model both cyclic actions,
e.g. walk or run, and non-cyclic ones, e.g., wave or bend [20].

5.2. Generation of contextual events

Next, in order to adapt its motion online, accomplishable goals must be
specified for an agent in the scenario. Such objectives require predicates to
adapt the agent trajectory, so it is valid in future time steps. For instance,
given an agent with state vector5 s

Ag
t = (xt, yt, vt, ot, at, pt), the predicate

go to location(Ag, Location) computes the shortest trajectory {sAg
t+1, . . . , s

Ag
n }

to arrive to Location and infers its next position (xt+1, yt+1) according to the
current speed value vt.

5.3. Behavior generation

Virtual agent behaviors need to be defined considering the previously
mentioned interactions. Reactions to the situations, used to annotate ob-
served events, are also employed to modify the agent status for future frame

5The state vector incorporates values for ground-plane position, velocity, orientation,
type of action, and percentage in the sequence of the action.
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Figure 5: p–actions computed in the aRun aSpace [20]. By varying the parameter pose
p we move along the manifold, temporally evolving the human body posture along the
prototypical performance of a learnt action.

steps. These generated status predicates are returned to the SGT as a feed-
back, and the reasoner considers them in following evaluations of the SGT.

This recursive procedure is depicted in Fig. 6. The traversal starts with
an initial status of a virtual agent, containing its position, orientation, speed,
and action at the very first time. Then, for each time step t, the traversal uses
the current agent status sAg

t to generate the next one sAg
t+1. In the example in

Fig. 6, the situation instantiated at time t generates the action predicate turn
(agent1, right). This predicate modifies the agent status so that the agent
will be turning to the right in the following time steps. The computation of
s
Ag
t+1 is based on s

Ag
t and the modeled p–action. The semantic concept right

is converted into a numerical value by combining the current orientation
o and speed v, and is used to generate the new position (x′, y′), speed v′,
and orientation o′ for the next time step. The obtained values are used to
construct the agent status for the time step t + 1 and will be used as input
for time step t + 2 in a subsequent traversal loop. More accurate physical
rules can be elaborated by simply defining them as FMTL predicates.

Action predicates like turn determine particular movements and actions
for a virtual agent. This is achieved by modifying its position, velocity, ori-
entation, and action. For example, accelerate (Agent, Value) modifies
the velocity of the agent for the next time step. The fuzzy concept Value
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Figure 6: Scheme of the AR process. When considering the pictured situation scheme, the
numbered predicates can be found in the corresponding states of the information flow.

describes the discrete value of speed that the agent will take in a future time
step. Collisions can be avoided by evaluating the distance between the virtual
agent and the rest of the object via has distance predicates, computed over
the estimated positions. Agent interactions are tackled in the same fashion,
given that each agent behavior is provided by a dedicated SGT traversal.
Obstacles have to be defined in the conceptual models provided a priori.

6. Experimental results

The described system has been tested on three different scenarios from
indoor, street, and sports scenes, in which original image sequences have
been incremented with virtual agents. We have validated the approach re-
garding segmentation, tracking, and event recognition. In the first case, we
compare the performance of 3 state-of-the-art background substraction tech-
niques when segmenting original and augmented sequences. We also evaluate
how different tracking algorithms perform at location entrances, occlusions,
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and location exits. Finally, we present lists of semantic annotations for the
original and augmented sequences of each scenario, to demonstrate that the
creation of virtual agents modifies in a controlled manner the initial perfor-
mances of the tracking algorithms.

Surveillance scenarios represent either open or closed environments, each
type entailing different events of interest: in street and soccer scenarios, cam-
eras cover wide regions and agents occupy a narrow part of the image, the
analysis thus being focused on their silhouettes and trajectories. On the other
hand, indoor scenarios typically deal with small environments that contain
a richer set of objects to interact with (chairs, tables, vending machines).
Regarding open scenarios, urban and sport environments also differ: soccer
scenes are more constrained in terms of number of agents and expected be-
haviors, which are based on well-known rules; urban street scenes contain
less prior information, and thus require a detailed semantic description of
the scenario elements to improve interpretations.

In order to study pedestrian behaviors and vehicle-pedestrian interac-
tions, we use the HERMES outdoor sequence 6. Secondly, we focus on the
analysis of sport video sequences to obtain descriptions of matches; to this
end, a soccer sequence from the VS–PETS 2003 database 7 has been used
to evaluate the behavior of soccer players. The third sequence depicts an
indoor cafeteria scenario, in which we analyze a vandalic indoor behavior. A
conceptual model of the environment has been designed for each application
domain, see Fig. 7. The scenario is represented in ground-plane coordinates,
which allows the reasoning system to work with accurate 3D information
extracted from calibrated cameras.

6.1. Evaluation of segmentation
Given that the mask of a virtual agent presents a synthetic –thus perfect–

chroma, it requires to undergo a process of noise generation to present the
characteristics of the camera output image. Several works have studied the
estimation and generation of camera noise; here, we follow the noise model
of a CCD camera as described in [31]:

I = f(L+ ns + nc) + nq (1)

6The indoor and street sequences presented here are part of the dataset recorded for
the HERMES Project (IST 027110, http://www.hermes-project.eu), which are publicly
available at http://iselab.cvc.uab.es/tools-and-resources.

7http://www.cvg.rdg.ac.uk/PETS2006/data.html

14



Sidewalk segment

Crosswalk segment

Wall segment

Road segment

Grass segment

Sand segment Cafeteria segment

Chair segment

Table

Vending machine

Fountain

Column

(a) (b)

LM

CM

RM

A

LC

RC

LD

CD

RD

Area

Left corner

Right corner

Left defense

Central defense

Right defense

Left middle

Central middle

Right middle

(c)

Figure 7: Conceptual models for the scenarios used to test behavior interpretation: (a)
street, (b) indoor, (c) soccer.

where f is the camera response function, L the irradiance, ns the irradiance-
dependent (photon) noise, nc the independent noise before gamma correction,
and nq the quantization/amplification noise, which is usually ignored. Noises
have zero mean, Lσ2

s variance for ns, and σ2
c variance for nc.

We evaluate segmentation comparing 3 techniques on background sub-
straction for shadow detection, Amato et al [32], Seo et al. [33], and Stauf-
fer and Grimson [34], with and without the incremental presence of virtual
agents. The original soccer sequence has been augmented twice, by adding
5 virtual agents each time. Estimated average values of Lσ2

s and σ2
c for the

original frames have been 0.036 and 0.050, and synthetic noise has been gen-
erated for each pixel in the masks. Fig. 8 shows silhouette segmentation
errors at pixel-level evaluated in terms of percentage of false positives (FP)
and false negatives (FN), over a random selection of 20 frames taken from
the sequence. A new ground truth has been computed by joining the existing
manual annotations with the ones automatically generated for virtual agents.

As it can be seen, the addition of virtual agents generally reduce the FP
rate. This happens because the lack of chromatic problems in the silhouettes
of virtual agents tends to ease the identification of foreground. The first
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Figure 8: Silhouette segmentation errors for the original and augmented sequences, in
terms of percentage of False Positive (FP) and False Negative (FN) pixels.

technique does not reduce errors as much as the other two when scaling the
sequence. On the other hand, we also observe an increment of the FN rate,
given the lack of precision of the algorithms to accurately segment the new
silhouettes, caused mainly by occlusions, camouflage, and clutter.

6.2. Evaluation of tracking

The evaluation of tracking algorithms has been tested incrementally, too.
The original HERMES outdoor sequence has been augmented with 30, 60,
and 120 virtual agents appearing and disappearing over the whole timeline.
Two different trackers have been tested: a blob tracker from the OpenCV
library8, which is well-known to the computer vision community, and a real-
time tracker based on segmentation on a static background [35]. The ground
truth labeling has been obtained manually using a touch screen.

Virtual agents were instructed to randomly follow behaviors like walking
by the sidewalk, waiting for someone, or crossing the street. Fig 9 com-
pares several frames showing the results of the two trackers from both the
original and the incrementally augmented sequences. We can see that the
performance drops as the crowd increments.

In order to validate the detection of simple tracking events, we account
the detection of simple tracking events compared to manual annotation. The
results are depicted in Table 3.

8http://opencv.willowgarage.com/
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(a) (b)

Figure 9: Top-down: Tracking results of the original sequence, sequence augmented with
30, with 60, and with 120 virtual agents, for (a) the OpenCV blob tracker and (b) the
real-time tracker [35]

We observe that tracking performance decreases as the crowd of virtual
agents is formed, especially for the second tracker, which is optimized for
real-time performance rather than multiple target tracking. For this tracker,
crowded context tends to have bounding boxes slide away until lost. The
blob tracker performs better on acquiring and holding on targets,

The entering / exiting scene events were successfully recognized. How-
ever, due to camouflage, the number of occlusions detected is higher than
the annotated ground truth. Finally, most of the events entering / exiting
crosswalk have been detected.
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Events Ground truth Tracker [35] Blob tracker

Or. 30 60 120 Or. 30 60 120 Or. 30 60 120

Enter scene 2 10 19 33 2 9 13 15 2 12 15 28

Exit scene 0 0 0 1 1 3 8 10 0 8 8 9

Start occlusion 1 4 10 29 2 6 8 16 1 4 10 27

End occlusion 1 4 9 13 2 5 7 8 1 3 9 23

Enter crosswalk 0 5 10 18 0 5 11 22 0 5 5 10

Exit crosswalk 0 0 0 1 0 1 4 4 0 1 3 3

Table 3: Detection of simple events in the first 17 seconds of the street sequence, for
original (Or.) and augmented versions with 30, 60, and 120 virtual agents.

6.3. Evaluation of event recognition and annotation

Table 4 show sample frames and annotations from the original and aug-
mented versions of the HERMES outdoor sequence. In the original sequence,
pedestrians Ag 1 and Ag 2 stop before entering the crosswalk and an ap-
proaching vehicle (Ag 3) does not give way, thus generating the event dan-
ger of runover. The textual description provided by the user has been: “A
new pedestrian appears by the lower left side at frame 800. The pedestrian
enters the crosswalk. He leaves by the lower right side”. The purpose of
this experiment is to study the capability of a behavior analysis system to
recognize target situations such as runovers. In addition, since virtual agents
are aware of what is happening in the original sequence, they can react to
previously recognized events. As it can be observed in the second annotation
table, the new virtual agent (Ag 4 ) is correctly tracked, and a new predicate
danger of runover is generated at frame 855. After having reacted to the
environment, this agent retakes the demanded behavior.

The second experiment is shown in Table 5. Its purpose is to demonstrate
that an addition of virtual agents may affect the behavior analysis annota-
tions. Events in the original sequence describe the normal development of a
match: player B 4 passes the ball during frames 195–284, this is intercepted
by A 2 at frame 295. In the augmented sequence, virtual agents have been
added as components of team B to interfere in the activity analysis. Each
virtual agent has been given two instructions: “A new player appears in the
<zone> at frame 180”, with <zone> being one of {CD,CM,LD, . . .} as
described in Fig. 7 (c), and “He chases after the ball”. In the new sequence,
virtual agent B 7 runs towards B 4 at frame 195. At frame 284, B 7 seems
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Original sequence

822 857 896

Augmented sequence

822 857 896

Start Event (original sequence) # Event (augmented sequence) #

806 appear (Ag3, left) 1 appear (Ag3, left) 1
810 enter (Ag1, crosswalk) 2 enter (Ag1, crosswalk) 2
824 danger of runover (Ag3, Ag1) 3 danger of runover (Ag3, Ag1) 3
825 stop (Ag1) 4 stop (Ag1) 4
825 — enter (Ag3, crosswalk) 5
828 brake up (Ag3) 5 brake up (Ag3) 6
828 danger of runover (Ag3, Ag2) 6 danger of runover (Ag3, Ag2) 7
838 back up (Ag2) 7 back up (Ag2) 8
838 — stop (Ag3) 9
842 stop (Ag2) 8 stop (Ag2) 10
852 accelerate (Ag3) 9 accelerate (Ag3) 11
855 — danger of runover (Ag4, Ag3) 12
871 appear (Ag4, left) 10 appear (Ag4, left) 13
872 exit (Ag3, right) 11 exit (Ag3, right) 14
891 give way (Ag4, crosswalk) 12 give way (Ag4, crosswalk) 15
895 — walk (Ag3, crosswalk) 16
898 walk (Ag2, crosswalk) 13 walk (Ag2, crosswalk) 17

Table 4: Semantic annotations obtained for the frame interval [805, 875] of the street
HERMES sequence, for the original and augmented sequences.
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Original sequence

195 284 295

Augmented sequence

195 284 295

Start Event (original sequence) # Event (augmented sequence) #

187 player carries ball defense(B 4) 1 player carries ball defense(B 4) 1

279 threw the ball(B 4) 2 threw the ball(B 4) 2

284 — passed ball(B 4, B 7) 3

296 lost the ball(B 4) 3 lost the ball(B 7) 4

296 player carries ball defense(A 2) 4 player carries ball defense(A 2) 5

Table 5: Semantic annotations obtained for the frame interval [187, 465] of the VS–PETS
image sequence and its augmented scene.

to have captured the ball, so the system interprets a correct pass between
team B members: passed the ball(B 4, B 7). However, the virtual agent does
not own the ball –the trajectory of an original element of the sequence cannot
be affected–. A 2 finally takes the ball, and the system interprets that the
virtual agent lost it, asserting lost the ball(B 7).

The list of events in the HERMES indoor scenario describe interactions
among agents, objects, and locations, and also interpretations of complex
behaviors and occurrences. In the original scene, 3 persons and 2 objects are
shown interrelating among them and with elements of a cafeteria such as a
vending machine, chairs, and tables. The instantiated events include agents
appearing and leaving, displacements among the different scenario regions,
sit down and stand up actions, normal interaction with a vending machine,
and violent behaviors such as kicking or punching the vending machine.

In this third and last experiment, shown in Table 6, a virtual agent inter-
acts with the elements of the scenario while partially occluding the real agents
in the scene. This example takes advantage of a closer position of the camera
to provide more detailed sequences of actions, so that specific combinations
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Original sequence

751 776 837

Augmented sequence

751 776 837

Start Event (original sequence) # Event (augmented sequence) #

702 — on location (Ag3, vending machine) 1

714 — vandalize vending machine (Ag3) 2

716 appear (Ag3, entrance1) 1 appear (Ag4, entrance1) 3

742 — use vending machine (Ag3) 4

755 on location (Ag3, cafeteria) 2 on location (Ag4, cafeteria) 5

782 on location (Ag3, table2) 3 on location (Ag4, table2) 6

882 meet (Ag3, Ag1) 4 meet (Ag4, Ag1) 8

890 — exit (Ag3, entrance2) 9

Table 6: Sequence of semantic annotations obtained for the frame interval [700, 900] of the
indoor HERMES sequence.

of gestures can be detected by activity analysis systems due to the increased
resolution of the agents. The input text in this case has been “A new person
enters by the first entrance at frame 650. He pushes the vending machine.
He takes a drink from it. He leaves by the second entrance”. In the aug-
mented sequence, particular behaviors like vandalize vending machine (Ag3)
at frame 714 or use vending machine (Ag3) at frame 742 can be correctly
detected by the system by means of pose estimation algorithms.
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7. Conclusions

We have presented a framework that may benefit research in the fields of
segmentation, tracking, and behavior analysis. The system presented here
can add virtual agents to available recordings using the presented framework,
in order to evaluate the limitations of segmentation, tracking, and behavior
understanding processes in terms of agent scalability, occlusion handling,
and agent interaction. Users do not require expertise in computer graphics,
given that the behavior of the virtual agents is controlled by NL sentences.
Experimental tests and validation in indoor, street, and sports environments
have showed the feasibility of the proposed approach.

The system semantically indexes the observed events. The taxonomy of
events provides the space and validity of possible annotations for video se-
quences of a domain. The SGT acts as a content classifier, which semantically
characterizes the temporal structure of video sequences. Thus, the resulting
predicates can be identified as high-level semantic indexes, which facilitate
further applications such as search engines and query-based retrieval of con-
tent. This scheme has been applied to video-surveillance. Future work will
be devoted to reduce the amount of prior knowledge that needs to be speci-
fied to a given scenario. The automatic extraction of conceptual knowledge
related to the scenario constitutes an interesting line of research nowadays,
and would relax the requirements to apply the proposed system into new
scenarios.

Appendix A. Linguistic user interaction

This contribution incorporates a Natural Language Understanding (NLU)
module that enables end-users to augment video sequences with virtual ac-
tors, in order to obtain complex augmented scenes.

NLU is typically considered a process of hypothesis management, in which
given a textual NL input, the most appropriate interpretation out of a set of
possibilities has to be chosen. In our case, the ontology of Table 1 specifies
the domain of validity undertaken by the universe of possible user queries,
and reduces them to a handleable space of situations.

The general operations conducted by the NLU module are shown in
Fig. A.10. First, each sentence of the user is processed by a stemming algo-
rithm based on parsing rules, and its contents are linked to concepts from
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Figure A.10: Scheme of the NLU module. Sentences written by the user are individually
converted into conceptual predicates that will generate the augmented sequences.

the global ontology9. After that, the specific context of the sentence is found
by relating the required referring expressions to entity instances, e.g., “this
agent”, “the second person”, and “last pedestrian” are expressions that refer
to specific agents. Lastly, the interpreted sentence is analyzed at a syntac-
tic/semantic level, and its contents are assigned to the most suitable action
predicate in order to generate virtual agents in the scene. Further informa-
tion about these processes is detailed in [36].

By linking each lemma to an ontological concept, we reduce the amount
of interpretations of an input sentence to those admissible. However, it
is possible that more than one word is directed to the same concept, e.g.,
pedestrian/person/walker→Pedestrian. In order to enhance the recognition
of words, and to avoid extra scaling the coverage of the linguistic models,
further lexical disambiguation is accomplished relying on the WordNet lexi-
cal database [37]. Lists of closely related words are retrieved using semantic
metrics based on relationships such as synonymy and hypernymy. New can-
didates are evaluated to determine the ontological nature of an unknown
word; as a result, the word is linked to a number of domain concepts that
can explain it.

On the other hand, the assignment of linguistic content to an action pred-
icate is achieved by (i) parsing the sentence into a dependency tree, and (ii)
measuring its distance to a series of pattern trees, each one associated to a

9To avoid excessive ambiguity when resolving the meaning of the inputs, this module
accepts uniquely single (not compound) sentences from the end-users.

23



Test Sentence

AdvP

NP

PP

NP

VP

<car>[Vehicle]

<go>[Go]

<slowly>[Slow]

<right>[RightSide]

drive ( Vehicle$0, 
 Location$0, 
 VelDescriptor$0)

 walk ( Pedestrian$0, 
 Entity$0, 
 VelDescriptor$0)

drive ( Vehicle$0, 
 Location$0)

TED (PatternSentence1) = 0.0
TED (PatternSentence2) = 2.0
TED (PatternSentence3) = 0.5

AdvP

NP

PP

VP

[Vehicle$0]

[Drive$0]

[VelDescriptor$0]

[Location$0]

PatternSentence1

NP

AdvP

NP

PP

VP

[Pedestrian$0]

[Walk$0]

[VelDescriptor$0]

[Entity$0]

PatternSentence2

NP

NP

PP

VP

[Vehicle$0]

[Drive$0]

[Location$0]

PatternSentence3

NP

Edit Cost (add) = 0.5
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 drive (Vehicle = Car1, 
 Location = RightSide, 
 VelDescriptor = Slow)

Predicate = ?

Figure A.11: A test sentence is compared to a collection of pattern trees, each one associ-
ated to a generic predicate. The predicate of that pattern with a lowest TED specializes
its predicate with information from the sentence.

predicate from the ontology. This is done by a Tree Edit Distance (TED)
algorithm [38] constrained by the ontology: the concepts at the leaves of
the trees are aligned to each other and compared, and their disagreement is
penalized. Penalties are high for absences, null for particularizations, and
for generalizations they depend on the levels of difference in the hierarchy of
concepts. Fig. A.11 depicts an example in which the concept Car augments
the distance with pattern tree 2 having Pedestrian at the corresponding leaf,
but specializes the general concept Vehicle at the same position in patterns
1 and 3 with distance zero. The pattern tree with lowest distance to the
test tree is considered the best interpretation, and the fields of its associated
predicate are particularized with specific information from the sentence.
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[20] J. Gonzàlez, D. Rowe, J. Varona, X. Roca, Understanding dynamic scenes based on Human Sequence
Evaluation, Image and Vision Computing 27 (10) (2009) 1433–1444.

[21] R. Bindiganavale, W. Schuler, J. M. Allbeck, N. I. Badler, A. K. Joshi, M. Palmer, Dynamically
altering agent behaviors using natural language instructions, in: AGENTS ’00: Proc. of the fourth
Int. Conf. on autonomous agents, ACM, New York, NY, USA, 2000, pp. 293–300.

[22] A. Nijholt, J. Zwiers, J. Peciva, Mixed reality participants in smart meeting rooms and smart home
environments, Personal and Ubiquitous Computing 13 (1) (2009) 85–94.

[23] S. Irawati, S. Green, M. Billinghurst, A. Duenser, H. Ko, “Move the couch where?”: developing an
augmented reality multimodal interface, in: Proc. ISMAR, Vol. 6, Citeseer, 2006, pp. 183–186.

[24] M. Douze, V. Charvillat, Real-time generation of augmented video sequences by background tracking,
Computer Animation and Virtual Worlds 17 (5) (2006) 537–550.

[25] G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in: Proc. Sixth IEEE
and ACM Int. Symposium on Mixed and Augmented Reality (ISMAR), Nara, Japan, 2007.
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