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Abstract

State-of-the-art systems on cognitive surveillance identify and describe
complex events in selected domains, thus providing end-users with tools to
easily access the contents of massive video footage. Nevertheless, as the
complexity of events increases in semantics and the types of indoor/outdoor
scenarios diversify, it becomes difficult to assess which events describe better
the scene, and how to model them at a pixel level to fulfil natural language
requests. We present an ontology-based methodology that guides the identifi-
cation, step-by-step modeling, and generalization of the most relevant events
to a specific domain. Our approach considers three steps: (1) end-users pro-
vide textual evidence from surveilled video sequences; (2) transcriptions are
analyzed top-down to build the knowledge bases for event description; and
(3) the obtained models are used to generalize event detection to different
image sequences from the surveillance domain. This framework produces
user-oriented knowledge that improves on existing advanced interfaces for
video indexing and retrieval, by determining the best suited events for video
understanding according to end-users. We have conducted experiments with
outdoor and indoor scenes showing thefts, chases, and vandalism, demon-
strating the feasibility and generalization of this proposal.
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1. Introduction

Automatic content-based video indexing has been requested for digital
multimedia databases for the last two decades, and more recently, this need
has also been emphasized in particular for video surveillance applications [8].
Surveillance systems have strong storage and computer power requirements,
deal with continuous 24/7 monitoring, and manage a type of content that
is susceptible to be highly compressed. Moreover, the number of security
cameras increases exponentially worldwide, opening windows of opportunity
for smart forensic analyses as vast archives of recordings constantly grow.

Current surveillance solutions for video annotation are robust when solv-
ing common visual tasks like segmentation, object recognition, or tracking,
and handling specific issues, e.g. shadows, occlusions, or weather conditions.
However, emulating the potential of human labor demands a deeper analysis.
In particular, semantic context plays a fundamental role in the recognition
of complex events [20]. As a consequence, recent tracks in this field aim
to enhance the results of tracking techniques by incorporating video under-
standing capabilities that detect and describe complex events observed in the
video sequences, by means of expert knowledge [22, 7].

Nevertheless, modeling semantic events becomes a difficult task for ex-
perts: which ones are best suited for the description of a specific scene? The
chosen events can be excessively particularized to ad-hoc scenarios, or be too
generic thus giving no relevant information; some events may be redundant,
and some may be of no use for the concrete objectives of the system. These
problems are augmented by the fact that most of the symbolic approaches
used nowadays model knowledge in a bottom-up fashion, thus distancing
themselves from the requirements of end-users [1, 3, 9, 16]. As a result, even
for sophisticated video understanding systems it is especially difficult to as-
sess how complete and appropriate are the semantic descriptions of events
described.

In order to cope with these issues, we propose a methodology that guides
the modeling and evaluation of the best suited semantic events given image
sequences from the surveillance domain. It considers the following steps:

1. First, in order to learn which events are important for our selected
surveillance domains, several video sequences from indoor and outdoor
scenarios are textually described by end-users.

2. The semantic descriptions are then used to build up the different onto-
logical knowledge bases of the system, by means of a detailed top-down
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procedure accomplished by experts that makes events extensive to the
tackled domain.

3. Finally, the generality and extensibility of the produced models within
the domain is tested on new, semantically rich indoor and outdoor
video sequences,

Our proposal bases on the cognitive vision system presented in [6, 10],
and extends it with the following contributions:

• an expert-based ontological procedure models semantic events for a
video surveillance system and assesses their suitability and complete-
ness;

• the top-down modeling of the ontological models facilitates user inter-
action capabilities toward advanced video indexing and retrieval; and

• the method unifies scenario-dependant models into generally applicable
ones by using the evidence given by end-users.

The resulting system builds upon the effective recognition of semantic context
that is user-oriented, i.e., modeled according to the expectations of end-users.

This contribution is structured as follows: next section reviews similar
work on the field. Section 3 overviews the two steps of the proposed method-
ology, i.e. top-down event modeling and bottom-up event inference. Sub-
sequent sections explore the modeling procedure in more detail: Section 4
describes the construction of the ontological knowledge bases at different
levels, and Section 5 implements natural language interfaces for description
and query retrieval that will be used to demonstrate the effectiveness of the
generated models. Sections 6 present experimental results of video indexa-
tion/retrieval and 7 and draw some final remarks.

2. Related Work

In the literature, many methods for content-based video indexing deal
with similarity measures based on trajectory, color, texture, and shape [26, 4].
They commonly search for video shots by computing low-level features on en-
tire or partitioned image frames, which are compared to those in consecutive
frames to detect strong transitions [28, 15]. Although low-level features are
particularly useful for still image retrieval [20, 4, 26] and video retrieval in
movies, broadcast news, or sports [25], they exhibit practical drawbacks for
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video surveillance. Firstly, surveillance footage hardly ever presents strong
transitions between consecutive frames, since the changing image fractions
are usually too small to result in detectable changes. Secondly, the seman-
tic analysis assessed by low-level features is very limited, especially when
working on very specific contexts. Finally, users prefer to retrieve content
regarding higher-level features, e.g., the semantic explanation of the occur-
rences or their circumstances.

Few approaches on content-based video retrieval tend to incorporate un-
derstanding capabilities to their systems, thus allowing flexible user queries
towards content retrieval [14]. Towards this end, the use of top-down image
retrieval techniques has been proven to assist the recognition of context by
providing semantic guidance through the process [21]. Top-down approaches
are especially interesting as well in the case of video browsing, which en-
hances the retrieval capabilities by organizing the videos given their essential
semantic content [25].

The recognition of events in video sequences has been extensively tackled
by the research community, ranging from simple actions like walking or run-
ning [17] to complex, long-term, multi-agent events [13]. Nevertheless, the
recognition of behaviors more complex than basic interactions has not been
investigated as exhaustively as the rest. Two main approaches are generally
followed in the recognition of non-basic events: probabilistic frameworks [24],
or rule-based approaches, in which complex events are recognized as the com-
bination of atomic primitives structured by predefined or learnt rules [27].

Given that surveilled scenarios are usually specific environments like traf-
fic locations, airports, banks, or border controls, to cite few, it is reasonable
to make use of domain knowledge in order to deal with uncertainty and
evaluate context-specific behaviors. Recently, different tools based on sym-
bolic approaches have been proposed in order to define the domain of events
appearing in selected environments, e.g. those based on conceptual graphs
or conditional networks. Nagel and Gerber [16] proposed a framework that
combines situation graph trees (SGT) with fuzzy logic reasoning, in order to
generate descriptions of observed occurrences in traffic scenarios. Extensions
of Petri Nets have also been a common approach to model multi-agent inter-
actions, and used as well for human activity detection [1]. Some other recent
approaches have employed symbolic networks combined with rule-based tem-
poral constraints, e.g. for activity monitoring applications [9]. Fig. 1 shows
examples of these symbolic structures used in video surveillance.

All these symbolic models, which work with predefined behaviors, show
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(a) (b) (c)

Figure 1: Common symbolic approaches for behavior modeling: (a) situation graph tree
[16], (b) Petri nets, [1, 3] (c) symbolic network [9].

good performances at behavior recognition, provide explanations of the de-
cisions taken, and allow uncertainty to be incorporated to the analysis, thus
making it more robust to noisy or incomplete observations. We choose SGTs
over other symbolic approaches due to the efficacious mechanisms of special-
ization and prediction they incorporate, which help modeling the universe
of situations in a clear, flexible, and controllable manner. SGTs and fuzzy
metric-temporal logic, unlike Petri nets, are adapted to model and evaluate
human behaviors on specific contexts, which we provide by means of ontolo-
gies.

The cited symbolic approaches allow semantic representations of the events
detected, which facilitate implementing user-computer interfaces. Nonethe-
less, none of them carries out a thorough evaluation of the correctness or
suitability of the selection of events, mainly due to the limited amount of
semantics found in the video sequences. Other works have proposed lists
of semantic events for the surveillance domain directly proposed by specific
groups [23], or based on the system capabilities to generate them [19, 7]. We
propose instead to base the models on evidence provided by human partici-
pants.

3. General system

The general architecture of the proposal is presented in Fig. 2. We divide
the system in 3 distinguished levels devoted to visual, conceptual, and user
interfacing tasks, and the presented process is as well divided in 2 steps: an
initial top-down modeling of the knowledge bases guided by an expert, and a
subsequent automatic, bottom-up inference by the system using the resulting
event models.

5



C
O

N
C

E
P

T
U

A
L

 L
E

V
E

L
U

S
E

R
 I
N

T
E

R
F

A
C

IN
G

V
IS

IO
N

 L
E

V
E

L

Situation 

graph trees

Linguistic

Models

End-user

Contextual

reasoning

Spatiotemporal

inference

Motion detection

and tracking

Factual DB

(A-Box)

NL interaction

Background, 

appearance 

models

Concept

taxonomies

(T-Box)

FMTL rules,

scenario models

O
n
to

lo
g
y
 

Video footage

STEP 2: 

Bottom-up event inference

Situation 

graph trees

Linguistic

Models

Concept

taxonomies

FMTL rules,

scenario models

Textually 

annotated 

videos

C
O

N
C

E
P

T
U

A
L

 L
E

V
E

L
U

S
E

R
 I
N

T
E

R
F

A
C

IN
G

STEP 1: 

Top-down event modeling 

(a) (b)

Figure 2: General overview. (a) First, general knowledge bases are built top-down, based
on end-user descriptions of events. (b) Once domain knowledge is available, automatic
indexing and retrieval of any video in the domain is accomplished bottom-up.

The top-down event modeling works as follows: first, based on several
training videos, we gather event descriptions reported by a large number of
non-expert users and assess the variability of these reports. The descriptions
are then used to build the semantic models in a top-down fashion, which will
be later used for the tasks of automatic event description in different videos.
The conceptual models are designed in a strict top-down fashion, unlike the
majority of current approaches for video indexing and understanding. Our
integrative architecture incorporates a large component of domain-knowledge
that is managed by dedicated modules, a common characteristic of expert
systems.
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Once the models are available, the system performs bottom-up event in-
ference on new video sequences. Video footage is first analyzed by motion
trackers: the visual stage simultaneously tracks multiple targets in uncon-
strained and dynamic open-world scenarios. In our experiments, the detec-
tion of targets follows a statistical background-subtraction approach based
on color and intensity cues [10]. Subsequently, the object trackers provide
instantaneous target states over time, including quantitative data (e.g. ve-
locity, size) and qualitative information (e.g. occlusions, groupings, splits,
target births and deaths). Enhanced details and additional information can
be found in [10].

The bottom-up inference continues at the conceptual levels. The quan-
titative data obtained from tracking is conceptualized and processed by the
spatiotemporal inference module, which reasons about basic facts using gen-
eral dynamic rules and spatio-conceptual models. At the contextual rea-
soning stage, we use domain-specific knowledge to interpret the context of
each occurrence and produce linguistic-oriented predicates. Each predicate
involves concepts like agents, objects, or locations, and relational patterns
from the ontology: these constitute the indexes stored in a relational database
to enable video retrieval. Final modules for user interfacing allow richer in-
teractions with end-users. In our case, we have implemented (i) a module to
generate natural language descriptions of the event indexes, and (ii) a mod-
ule that interprets natural language texts to accomplish efficient query-based
retrieval.

Next sections detail how to accomplish the top-down modeling of events.

4. Conceptual level

This section describes the top-down modeling employed to address tasks
of knowledge management, inferential reasoning, and video understanding.
The different steps include (i) building a domain ontology from linguistic
psychophysical tests run on several subjects, (ii) contextualizing targeted
events with concrete models that decompose them into simple facts, and (iii)
link these facts to spatiotemporal data available from tracking.

4.1. Ontological modeling of relevant events

The target events to be detected in surveilled footage are typically deter-
mined by the purposed application. Nevertheless, assessing interpretations
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Figure 3: Snapshots of outdoor (a,b) and indoor (c) video surveilled scenarios used for the
ground-truth annotation of semantic evidence.

often becomes uncertain when dealing with complex events, leading to engi-
neered solutions that may differ from end-user’s perceptions. In order to deal
with this, we have run questionnaires to identify which events are relevant
to end-users in our restricted domain, in order to model them in a top-down
fashion.

The ground-truth annotation of events has been extracted this way from
psychophysical experiments of manual video annotation. Three scenes from
indoor and outdoor scenarios have been recorded, showing different kind of
interactions among people, objects, and vehicles, see Fig. 3. They show
some complex events like stealing objects, crossing roads, waiting to cross,
or getting almost run over by cars. A population of 60 English speakers were
requested to visualize the videos1. 40 of the subjects were told to annotate at
least 20 notable occurrences happening in each training sequence, the other
20 did the same for the two test sequences used for experimental results.
Similar annotations were manually gathered together by experts, e.g. ‘talk’
– ‘have a conversation’ – ‘discuss’ → ‘talk to someone’. Table 1 gives the
frequency of common annotations for outdoor and indoor training videos. For
events occurring more than once in the same video, the maximum frequency
was considered.

An ontology of events has been created out of the results provided. Each
annotation incorporates, explicitly or implicitly, the semantic context re-
quired to model an event, by means of a series of concepts that have been

1The subjects (half men, half women) were recruited from 5 different countries and from
different age intervals: 18–25 (12%), 25–35 (66%), and over 35 (22%). They also came
from different backgrounds: technical studies (27%), sciences (40%), humanities (30%),
and other (3%).
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Use Outdoor annotations Use Indoor annotations
100% leave object 100% pick up / retrieve bag
100% wait/try to cross 96% leave a location
90% walk in a location 96% use vending machine
86% cross the road 96% sit down at a table
84% run off/away 92% talk to someone
84% yield someone 90% appear in a location
80% chase after someone 88% leave a bag on the floor
70% pick up an object 85% stand up
63% join someone at a location 81% shake hands with someone
60% appear in a location 69% kick/hit vending machine
50% steal object from someone 62% carry a bag
47% do not allow someone to cross 58% go/walk to a location
44% danger of runover 50% abandon/forget an object

Table 1: Most common annotations for the two scenarios, sorted by percentage of people
that used them to describe the semantic events.

structured in 3 categories: events, entities, and constraints. The Event
concepts identify the occurrence described, and are organized from simple
to complex as (i) spatiotemporal inferences from tracking, (ii) interactions
among entities, and (iii) interpretations of complex events in specific con-
texts. Entity concepts determine the nature of the participants in the event,
which can be agents, objects, or locations. Finally, Constraint concepts ac-
count for the roles that entities are required to satisfy within an event, i.e.,
the list of agents, patients, locations, or objects needed. All these concepts
are classified in taxonomies and together conform the terminological part of
the ontology, the so-called T-Box T [12]. Table 2 reports how the annotated
events are used to build the T-Box of the ontology: the entities required
by each event are identified, and related to the particular event by means
of constraints, which give additional information on the type of relationship
held with each of the entities.

Apart from T , the ontology also incorporates an ABox A storing concept
instances, i.e., factual information regarding the world state and the individ-
uals existing on it [12]. Once the abstract events, constraints, and entities
are satisfied for a certain world state, these concepts are instantiated into the
factual database as Facts, Constraint instances, and Entity instances, respec-
tively. For example, for the theft event in Table 3, the ontology requires a
thief, isAgent(Pedestrian), a victim, has agent interaction(Pedestrian), and
a stolen item, has object interaction(Object), in this case fulfilled by instances
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User annotation Event Entities Constraints

pick up bag pick up
Pedestrian is agent

PickableObject hasObjectInteractionWith

wait to cross wait
Pedestrian is agent

Location hasLocationInteractionWith

leave a location exit
Agent is agent

Location hasLocationInteractionWith

steal object from someone theft

Pedestrian is agent

PickableObject hasObjectInteractionWith

Pedestrian hasPatientInteractionWith

danger of runover danger of runover
Vehicle is agent

Pedestrian hasPatientInteractionWith

abandon/forget object abandoned object
PickableObject isObject

Location hasLocationInteractionWith

meet with someone meet

Pedestrian is agent

Pedestrian hasPatientInteractionWith

Location hasLocationInteractionWith

Table 2: A list of examples on how the user annotations are used to populate the T-Box
T of the ontology with concepts and relationships.

Entity type (T ) Instance (A)
Pedestrian ped2
Vehicle veh1
Location sidewalk
Object obj1
Descriptor fast

=⇒

Event type (T ) Indexed fact (A)
Spatiotemporal walk (ped2, fast)
Interaction appear (ped2, sidewalk)
Interaction pick up (ped2, obj1)
Interpretation theft (ped2, ped1, obj1)
Interpretation danger of runover (veh1, ped2)

Table 3: Possible instances of entities (left) used in event indexes (right). For a theft to
be indexed, ped2, ped1, and obj1 must accomplish a certain semantic context.

ped2, ped1, and obj1, respectively.
In the end, the domain of interest is formally represented by a knowledge

base K = 〈T ,A〉, the factual database, which includes both the concepts
and their instances. Fig. 4 gives a concise view of the factual database
implemented: the abstract concepts are Events, Entities, and Constraints
that state which entities are needed for which events. On the other hand,
instances for these 3 types of concepts are stored in the 3 other tables: Entity
instances list appearing entities, Facts are detected occurrences of events, and
Constraint instances link ones to the others.
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Figure 4: Detail of the structured relations between concepts and instances in the factual
database: upper tables contain T-Box concepts (events, constraints, and entities), and
lower ones show their A-Box instances.

4.2. Contextual modeling

At this point, the ontology already states which elements are required by
each event, but we still need to model the domain-specific context in which
an event occurs. As stated before, events are situated in their context by
means of SGTs.

An SGT defines the universe of possible situations in which an agent can
participate. Each situation scheme evaluates a set of conditions in form of
atomic predicates and reacts when all of them are asserted. In our case,
reactions are note commands that produce the linguistic-oriented event in-
dexes seen and facilitate NL-based retrieval [16]. Fig. 5(a) and (b) show parts
of SGTs that exemplify their basic mechanisms to contextualize: situations
are hierarchically nested from general to specific by means of specialization
edges forming a tree, and sequentially connected by unidirectional prediction
edges producing graphs within the tree. Self-prediction edges hold a current
situation until any continuing situation applies. This scheme recurrently de-
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ID High-level predicate Temporal decomposition

➀ left object(Object, Agent) t0 :
split(Agent,Object)

∧ has speed(Object, zero)

➁ abandoned object(Object,Agent)

t0 : left object(Object, Agent)

t1 :
has distance(Agent, Object, far)

∧ has speed(Object, zero)

➂ pick up (Agent, Object)

t0 : left object(Object, Agent)

t1 :
grouped(Agent, Object)

∧ has speed(Object, V)

∧ is not(V, zero)

➃ stopped (Pedestrian)
t0 :

has speed (Pedestrian,V)

∧ is not (V, zero)
t1 : has speed (Pedestrian, zero)

➄ running (Pedestrian) t0 : has speed(Pedestrian, high)

Table 4: To model SGTs, high-level events from the ontology are decomposed into con-
junctions of simpler events that are temporally chained. The obtained decompositions are
then merged in a single tree of situations for each type of agent.

composes the evaluation of complex facts into series of low-level facts, which
need to be asserted sequentially.

Carrying on the top-down modeling of semantic events, we build SGTs
to define a priori the situations agents can be in. To do so, complex ac-
tions are decomposed in a combination of simpler events that are sequen-
tially connected in time. Table 4 details the decomposition of the situations
left object, abandoned object, pick up, stopped, and running. It can
be observed that many elements in the various decompositions are common,
and thus can be merged in a single SGT. Simpler events are recursively
decomposed until reaching to a combination of mere spatiotemporal descrip-
tions. The 5 examples of decomposition in Table 4 have partially generated
the SGTs shown in Fig. 5(a) and (b). More complex events are also possi-
ble: for example, by combining actions like leave object, get close, pick up,
and run, a theft event can be modeled, as shown in Fig. 5(c). Extra events
are sometimes included into the ontology for better definition of a particular
context, e.g. for the event belongs to.

The role of SGTs in the overall scheme is twofold: on the one hand,
they help understanding the full picture of a scene by assessing high-level
interpretations from concrete pieces of information. And on the other hand,
SGTs make it possible to distrust or simply neglect certain frames when
the position of a target suddenly changes to a far distant location, e.g. if the
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has_distance (Agent, Object, far)

has_speed (Object, zero)

note (abandoned_obj (Object, Agent))

SIT_ABANDON_OBJECT

1

grouped (Agent2, Object)

has_speed (Object, V)
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note (walking (Pedestrian))

SIT_WALKING

1
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note (running (Pedestrian))
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1
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1

has_speed (Pedestrian, V)

isnot (V, zero)

NO_ACTION_PREDICATES

SIT_MOVING

1

has_speed (Pedestrian, zero)

note ( stopped (Pedestrian))
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agent_near_obj (Pedestrian1, Object)
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1

is_object (Object)

NO_ACTION_PREDICATES

SIT_OBJ_ACTIVE

1

12

split (Pedestrian1, Object)

belongs_to (Object, Pedestrian1)

note ( object_left (Object, Pedestrian1))

SIT_BELONGING

agent_near_obj (Pedestrian2, Object)

Pedestrian1 <> Pedestrian2

note (theft (Pedestrian2, Object, Pedestrian1))

SIT_THEFT

1

object_alone (Object)

note ( abandoned_obj (Object))

SIT_ABANDONED

1

2

2

...

...

(c)

Figure 5: SGT mechanisms to situate events in a context: (a) temporal prediction and
(b) specialization. These SGTs incorporate the decompositions shown in Table 4. A part
of an SGT used in outdoor scenes is shown in (c).

tracker freezes for a while. These and similar situations make them a suitable
tool to partially bridge both semantic and sensory gaps in our domain.

The current implementation of the SGT only asserts those predicates
with highest confidence values, which unfits the system to handle multiple
valid hypotheses at the same time, but in exchange avoids a combinatorial
explosion of solutions. Only one event annotation is produced by the SGT
per frame and tracked agent, which allows us to associate each predicate with
an interval of validity, and build a history of events related to each detected
object. When an alarm is missed at the vision level, an SGT instantiates the
most specific of the events in the graph given the state conditions available.
The more levels we define in the hierarchy, the more robust the system is in
front of lacking information, but the computational cost increases.

13



4.3. Spatiotemporal modeling

The last conceptual task involves describing the multiple atomic events
used in the SGTs in terms of low-level information provided by the motion
trackers. To do so, a set of basic spatiotemporal rules are defined for the
domain, focusing on general rather than particular contexts.

The reasoning engine of the system is based on Fuzzy Metric-Temporal
Logic (FMTL), which extends conventional logic by temporal and fuzzy com-
ponents. The first component permits the engine to represent and reason
about propositions evaluated at each time-step, while the last one enables it
to cope with uncertain or partial information, by allowing degrees of validity.
Temporally-valid numerical status vectors from tracking are converted into
has status fuzzy predicates at each time-step, which convey information
about the id and type of the target, its spatial location in a ground-plane rep-
resentation of the scenario (X, Y ), and his instantaneous orientation (Theta)
and velocity (V ) at time t.

t ! has status (Agent, X, Y, Theta, V)

General spatiotemporal rules for each type of agent assign fuzzy values
like slow or very fast, according to the membership functions modeled. A
schematic representation of the locations in the scenario is as well predefined
in terms of factual atomic predicates. In addition to these two sources of in-
formation, the reasoner provides inferences of new facts based on temporal-
geometric conditions: the role of the designer at this point consists of ex-
plaining every generic low-level predicate found in the SGTs in terms of the
has status variables. For instance, for a similar direction predicate, the
tracking data is derived to symbolic information as follows:

always(similar_direction(Agent, Agent2):-

has_status(Agent,_,_,_,Or1,_),

has_status(Agent2,_,_,_,Or2,_),

Dif1 is Or1 - Or2,

Dif2 is Or2 - Or1,

maximum(Dif1, Dif2, MaxDif),

MaxDif < 30 ).

Hence, the FMTL reasoner engine converts geometric information into
qualitative knowledge that is time-indexed and incorporates uncertainty.
Note that FMTL rules are defined generally for the domain, and not de-
pendent on particular scenes: only the semantic zones must be modeled for a
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new scenario. This way, the models are extensible and tracking information
is easily conceptualized and forwarded to the upper levels discussed.

5. User interfacing level

Video search and retrieval interfaces are used by end-users, thus demand-
ing flexible and user-friendly tools for natural language interaction. In order
to demonstrate the validity of our semantic framework to connect with ad-
vanced NL interfaces and fulfill non-trivial requests in English language, this
section describes a possible extension to Natural Language Generation (NLG)
and Natural Language Understanding (NLU).

NLG has been often considered a process of choosing suitable expressions
to communicate some content, whereas NLU has usually been regarded as a
process of hypothesis management that decides for the most probable inter-
pretation of linguistic inputs [18]. In our case, the first module facilitates the
generation of NL sentences for the indexed events, while the latter enables
video and information retrieval from NL textual queries. Fig. 6 illustrates
these processes, explained next.

5.1. Natural language descriptions

The first stage of the NLG module enhances standard parsing techniques
in order to convert an incoming predicate into a tree structure, which gives
a unique predicate interpretation and provides a background structure for
the final surface sentence. Predicate types are linked beforehand to tree
templates, whose shapes come predefined by the already seen ontological
constraints held by the event; for instance, is agent determines the agent
(subject of active sentence) for wait with, see Fig. 6. In addition, different
templates are possible depending on the information available: instead of
“X waits with Y ” we could have “X waits with Y in Z ”, thus producing an
extended tree.

A lexicalization process maps semantic elements into linguistic resources
(units or subtrees) that communicate their contents. Tree templates already
assign lemmata to events and prepositions, but additional steps are required
for entities. First, particularizations must be applied when available, e.g.,
replacing a general predicate appear(agent, location) by appear(vehicle, left).
Subsequently, lexical choices are given for specific parts of the domain, such
as upper right being expanded as “upper right side”.
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NL INTERFACE

"He waits with another pedestrian."

Sent:  1010:1024 ! wait_with (ped2, ped4) Retrieved: 1010:1024 ! wait_with (ped2, ped4)

[entity.agent]

[event.interpret.wait_with]

[entity.agent]

[descriptor.last]

<who>¬wW

<wait_with>¬wvP

<someone>¬wn

<last>¬wt

"Who waited with someone for the last time?"

END-USER

FACTUAL DATABASE

1 - Linkage to tree templates

2 - Lexicalization

3 - Referent expression generation

4 - Morphology and formatting 1 - Morphological parsing

2 - Query association by Tree Edit Distance

3 - Conversion to SQL queryNP

VP

PP

NP

wait_with(pedestrian$0, pedestrian$1)

pedestrian$0

wait_with$0

pedestrian$1

“pedestrian wait with pedestrian”

“he wait with another pedestrian”
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Figure 6: Step results for the processes involved in the NLG and NLU modules. Notice
that the concepts linked to words at different steps are either Facts or Entity Instances
from the factual database, as seen in Fig. 4.

At this point, we must solve the issue on how to refer to entities so that
they can be easily identified in the context of the discourse. This task is
known as Referring Expression Generation (REG) [18], and we accomplish
it with the help of onomasticons [6]. An onomasticon is a repository that
tracks instances of entities along the discourse, allowing the system to an-
swer questions like: has it ever been instantiated?, more than once?, are there
other instances of the same concept?, was it the central entity in the last sen-
tence generated?, or was the last instance definite? The proper combination
of these REG cases allows the NLG module to choose the most appropri-
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ate referring expression, like an [entity], a new [entity], the [entity], this last
[entity], the second [entity]. For example, if we have seen a car in the scene
previously, and a new agent of type car appears, we use “a new car”; other-
wise, if none of the vehicles or other agents seen was specifically a car, we use
simply “a car”, thus highlighting the class instead of the actual instantiation.

Finally, the morphological and surface realization process involves map-
ping the specification of a text into a surface text form, i.e. a sequence of
words, punctuation symbols, and mark-up annotations to be presented to
the end-user [18]. In practice, it consists of applying parsing techniques to
modify either independent words (verb inflections or conjugations, plurals)
or words depending of their surrounding context (contractions, vowel adja-
cency, prosodic effects). In the example of Fig. 6, the third person of the verb
has been conjugated; similarly, this step also updates tenses (“leave”→“has
left”) and changes words in context (“a agent”→“an agent”). As a result
of the morphological process, a rich semantic/syntactic tree structure with
referred expressions and morphological forms is generated. The lineariza-
tion of the tree nodes and a final addition of orthographical and formatting
information provides a final surface form for the end-user.

5.2. NL-based retrieval

Following the idea of hypothesis management, the NLU module links tex-
tual sentences to their most accurate interpretations in the domain, in form
of predicates related to scene concepts and instances. Once a proper for-
matting has been applied, an input sentence is analyzed through a sequence
of 3 processes [6]: first, a morphological parser tags words with linguistic
features depending on the context of apparition, and a syntactic/semantic
parser builds a dependency tree out of the tagged sentence. Secondly, the re-
sulting tree with ontological references is assigned to the most related query
predicate from a collection of patterns. Finally, the obtained predicate is
used to query the factual database of indexed occurrences. The process is
detailed next.

The semantic part of the analysis already starts with the word tagging
process: the lexical models attach domain concepts to words that potentially
refer to them. Hence, there are two issues to solve, since (i) a word can
be linked to several concepts, e.g., word “turn left” (concept Orientation-
Descriptor) and “left entrance” (Location); and (ii) each concept may also
have many words attached to it, as for the words “person”, “pedestrian”, or
“walker” and the concept Pedestrian. Parsing rules solve the first ambiguity.
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 VelDescriptor = Slow)
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Figure 7: A test sentence is compared to a collection of pattern trees, each one associated
to a generic predicate. The predicate of that pattern with a lowest TED specializes its
predicate with information from the sentence.

Regarding the second issue, a robust system must be able to understand not
modeled words, i.e., to sensibly link unknown words to a domain concepts.
To this end, we rely on the WordNet lexical database [5] to retrieve lists of
closely related words, using semantic metrics based on synonymy and hyper-
nymy. New word candidates are evaluated to determine the nature of the
unknown word. As a result, the word is linked to a number of concepts that
can explain it.

Next, a dependency tree is built with the help of syntactical rules, which
first identify the heads of phrase classes and then recursively nest words and
phrases hierarchically. The resulting tree is then compared to a collection
of tree patterns by computing a semantically-extended Tree Edit Distance
(TED) [2], see Fig. 7. In order to compute the TED, the concepts at the
leaves of the pattern trees are aligned to those from the test tree, and the TED
evaluates the coincidence of each concept: it penalizes strongly the absences,
penalizes the generalizations proportionally to the number of levels to the
test concept, and does not penalize at all when the test concept matches
or particularizes the pattern one. For example, the concept Car augments
the distance with pattern tree 2 having Pedestrian at the corresponding leaf,
but specializes the general concept Vehicle in the same position of pattern
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(a) (b)

Figure 8: Indoor and outdoor video footage to test indexing and retrieval (a) and their
associated spatio-conceptual models (b).

3 with distance zero. The pattern tree with lowest distance to the test tree
is decided as the most valid interpretation, and the fields of its associated
predicate are particularized with specific information from the sentence.

A final step adapts the query to the relational language used for the fac-
tual database, in this case SQL. The retrieval process returns the entries that
satisfy the query of the end-user, along with the interval of the video sequence
corresponding to the event index. Some examples of NL-based retrieval are
presented in the next section, along with the rest of the experimental results.

6. Experimental results

The ground truth annotation of events was accomplished using 3 differ-
ent image sequences, 2 outdoor and 1 indoor. The first outdoor sequence
(2250 frames@25fps, 640×480 pixels)shows the entrance of a public build-
ing, where pedestrians come in and out and interact with some cars and
motorbikes on their way. The second outdoor sequence (600 frames@15fps,
1256×860 pixels) is a crosswalk scenario, in which 4 pedestrians enter a cross-
walk in different manners, in the presence of vehicular traffic. The indoor
training video (1575 frames@15fps, 1256×860 pixels) contains specific events
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like leaving bags, greeting a person, taking objects from someone else, sitting
down, or kicking a vending machine.

Two scenes from the same domain were recorded for tests, one in a traffic
scenario and the other one in a cafeteria, see Fig. 8. These test scenes share
similar events than the ones found in the test sequences, in completely dif-
ferent scenarios. The outdoor scene contains 1611 frames@15fps of 720×576
pixels, in which pedestrians, pickable objects, and vehicular traffic interact
in a pedestrian crossing. The indoor scene contains 2005 frames@15fps of
1392×1040 pixels, in which people and objects interact among them and
with the elements of a cafeteria, viz. a vending machine, chairs, and ta-
bles. Both sequences show complex events like abandoned objects, thefts,
chases, or vandalism. These sequences have been automatically analyzed
and indexed by the proposed system.2

The asserted events for every detected target have been stored in a SQL
relational database to enable data retrieval. Every asserted event points to a
temporal interval of validity in the sequence, and relates the involved target
to its contextual blanket. Fig. 9 shows the results for automatic indexation, in
which a collection of annotations for high-level events have been successfully
generated for sequences recorded in outdoor and indoor surveilled scenarios,
respectively. The collection of video annotations describe interactions among
the involved entities, and also interactions and interpretations of complex
occurrences.

Examples of content-based video retrieval are presented in Table 5, which
retrieve episodes of sequences containing certain events or entities. More
complex queries are possible, e.g. querying for chases after thefts, objects
owned by different persons, or scenes in which a number of agents were seen
at a certain location. As for the NL queries, acceptable propositions also
restrict to the domain imposed by the ontology. This way, users are enabled
to ask for any modeled event involving any of the entities, which is related
to any semantic zone in the scenario, and happens at any point or interval
of time. These are some examples of the most repeated types of user queries
that have been accepted by the NL module:

• Show me pedestrians meeting between frames 300 and 1200.

2The sequences used in these experiments can be found at http://iselab.cvc.uab.es/
tools-and-resources.
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Figure 9: The facts produced by the system (left) when processing the indoor and outdoor
scenes (right) account for the main events and behaviors pointed out by end-users in other
scenes of the domain.
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Entity ID: Agent5

Interval: 1200–1250
Sequence: Outdoor-1

Interval Event Arguments

1186–1202 pick up is agent(Agent5)
has object interaction with(Object2)

1186–1276 carry object is agent(Agent5)
has object interaction with(Object2)

1211–1219 run is agent(Agent5)
has location interaction with(Road)

1220–1240 theft is agent(Agent5)
has patient interaction with(Agent1)
has object interaction with(Object2)
has property(Malicious)

1241–1275 chase is agent(Agent1)
has patient interaction(Agent5)

Entity ID: Object1

Interval: 550–1250
Sequence: Indoor-2

Interval Event Arguments

501–601 carry object is agent(Agent2)
has object interaction(Object1)

602–1236 leave object is agent(Agent2)
has object interaction(Object1)
has location interaction(Hall)

1237–1712 abandoned object is patient(Agent2)
has object interaction(Object1)
has property(Malicious)

Table 5: Examples of retrieval of episodic events when querying for a given entity.

• How many people has picked up bags?

• Have you seen any pedestrian running by the road after a theft?

• List all vehicles before frame 600.

Similar concepts are automatically linked using the metrics over WordNet,
such as pedestrians–people. In the experiments, subjects usually restricted
to simpler queries. The difficult queries were usually too generic or stepped
out of the domain, with sentences such as “How is this person dressing?” or
“Does it rain?”, in which case the concepts found could not be linked to the
factual database. Out of the total number of queries asked that belonged to
the domain, a 91% of them led to proper understanding by the system. Most
of the non-understood questions were those starting with why or how, types
that usually result less objective to answer.

These results have been compared to the validation data set provided by
the second group of subjects. Fig. 10 shows the number of events agreed
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Outdoor indexing Indoor indexing

Share Detected/Agreed Share Detected/Agreed
3% 26/50 (52%) 3% 18/29 (62%)
10% 24/33 (73%) 11% 15/21 (71%)
20% 19/25 (76%) 25% 14/18 (78%)
33% 17/21 (81%) 31% 13/17 (76%)
40% 15/17 (88%) 42% 11/15 (73%)
50% 12/12 (100%) 50% 12/13 (85%)
60% 10/10 (100%) 61% 9/11 (82%)
70% 8/8 (100%) 69% 8/10 (80%)
80% 7/7 (100%) 80% 7/9 (78%)
90% 3/3 (100%) 92% 4/5 (80%)
100% 2/2 (100%) 100% 1/1 (100%)

Figure 10: Correctly indexed events. Left graphic: horizontal axis shows the percentage
of people agreeing with a set of events; vertical axis reports the total of events in this set,
and the number out from them that were recognized. Right table: numeric details.

by a certain percentage of the population, and the events out of that set
correctly identified by the system. Fig. 11 presents the percentage of events
correctly recognized. As we can see, for sets of events agreed by above 50%
of the population, the system recognizes all of them in the outdoor scenario
and 85% of them in the indoor one. On the other hand, if we consider
the set of events identified by more than 90% of the subjects, a recognition
rate of more than 90% is achieved in both scenarios. The reason of the
different performance between indoor and outdoor scenes is that although
indoor image sequences permit a reduced viewpoint and incorporate less
events, the events detected show a higher semantics, such as body gestures,
facial expressions, and subtler interactions between agents, which require
more knowledge than that one obtained solely from trajectory data.

Some examples of non-recognized annotations are ignore object, be upset,
be hesitant, talk, realize about someone, or shake hands, among others, which
mostly happened in indoor sequences. All undetected events were shared by
less than 20% of the population, given the subjectivity of the interpretation,
except for talk and shake hands. In these two cases, the semantic framework
facilitates retrieving non-modeled events by searching for similar concepts,
e.g. meet or interact.
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Figure 11: Percentage of retrieval. Failures in indoor sequences are mainly due to unhan-
dled recognition of expressions and gestures by the vision algorithms. Highlighted minima
correspond to be upset, shake hands, and talk (left to right).

7. Conclusions and Future Work

State-of-the-art on surveillance video analysis is heading to the automatic
exploitation of semantic context, in order to extract event patterns that
permit us a better comprehension of image sequences. Nevertheless, few
works assess the suitability and coverage of the selection of semantic events
to model, and most of them are restricted to very specific scenarios, thus
questioning the generalization capability of the methods used. In addition,
these events should also be suited for end-user interfacing of video contents,
something difficult to achieve by using bottom-up procedures.

Our methodology contributes to these three challenges. First, it copes
with the ambiguous and sometimes incorrect interpretations done by experts
while building conceptual models. The ontology and the rest of the knowl-
edge bases are modeled in a top-down manner from users’ textual evidence,
constituting a separate identifiable part of the design. The technique chooses
the most suited event concepts from different scenarios, merging them into
single models (ontology, SGT), and thus enabling generalization to different
scenarios in the surveillance domain. And finally, since the ontology has been
built from linguistic corpora, it provides straightforward connection to NL
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interfaces like those shown for video description and retrieval, allowing end-
users to access meaningful video content flexibly by means of NL descriptions
and dialogue-based instructions.

The resulting models can be independently maintained and increased, for
being part of an expert system. Furthermore, this modular framework al-
lows multimodality, as long as any new information from additional modules
comes in form of atomic facts; in that case, it is easily integrated into the
situation analysis.

Next steps will test the proposed framework to the challenging domain
of movie and media analysis. To this end, current behavioral models will
be enhanced by implementing a module for effective facial expression recog-
nition, thus enabling the detection of most of the behaviors that could not
be recognized in the low resolution surveillance videos. To consolidate the
approach, steps will be taken toward (i) automatically learning the semantic
context from visual features and (ii) holding multiple hypotheses as probable
interpretations through the SGT traversal.
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