toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Oscar Argudo; Marc Comino; Antonio Chica; Carlos Andujar; Felipe Lumbreras edit  url
openurl 
  Title Segmentation of aerial images for plausible detail synthesis Type Journal Article
  Year 2018 Publication Computers & Graphics Abbreviated Journal CG  
  Volume 71 Issue Pages 23-34  
  Keywords Terrain editing; Detail synthesis; Vegetation synthesis; Terrain rendering; Image segmentation  
  Abstract The visual enrichment of digital terrain models with plausible synthetic detail requires the segmentation of aerial images into a suitable collection of categories. In this paper we present a complete pipeline for segmenting high-resolution aerial images into a user-defined set of categories distinguishing e.g. terrain, sand, snow, water, and different types of vegetation. This segmentation-for-synthesis problem implies that per-pixel categories must be established according to the algorithms chosen for rendering the synthetic detail. This precludes the definition of a universal set of labels and hinders the construction of large training sets. Since artists might choose to add new categories on the fly, the whole pipeline must be robust against unbalanced datasets, and fast on both training and inference. Under these constraints, we analyze the contribution of common per-pixel descriptors, and compare the performance of state-of-the-art supervised learning algorithms. We report the findings of two user studies. The first one was conducted to analyze human accuracy when manually labeling aerial images. The second user study compares detailed terrains built using different segmentation strategies, including official land cover maps. These studies demonstrate that our approach can be used to turn digital elevation models into fully-featured, detailed terrains with minimal authoring efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0097-8493 ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ ACC2018 Serial 3147  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Error-Correcting Factorization Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue Pages 2388-2401  
  Keywords  
  Abstract Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ BPT2018 Serial 3015  
Permanent link to this record
 

 
Author Ester Fornells; Manuel De Armas; Maria Teresa Anguera; Sergio Escalera; Marcos Antonio Catalán; Josep Moya edit  openurl
  Title Desarrollo del proyecto del Consell Comarcal del Baix Llobregat “Buen Trato a las personas mayores y aquellas en situación de fragilidad con sufrimiento emocional: Hacia un envejecimiento saludable” Type Journal
  Year 2018 Publication Informaciones Psiquiatricas Abbreviated Journal  
  Volume 232 Issue Pages 47-59  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0210-7279 ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ FAA2018 Serial 3214  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title An overview of incremental feature extraction methods based on linear subspaces Type Journal Article
  Year 2018 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 145 Issue Pages 219-235  
  Keywords  
  Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0950-7051 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DFH2018 Serial 3090  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil edit   pdf
doi  openurl
  Title Continuous head pose estimation using manifold subspace embedding and multivariate regression Type Journal Article
  Year 2018 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 18325 - 18334  
  Keywords Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression  
  Abstract In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018b Serial 3091  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: