Olivier Penacchio, Xavier Otazu, A. wilkins, & J. Harris. (2015). Uncomfortable images prevent lateral interactions in the cortex from providing a sparse code. In European Conference on Visual Perception ECVP2015.
|
|
Xavier Otazu, Olivier Penacchio, & Xim Cerda-Company. (2015). An excitatory-inhibitory firing rate model accounts for brightness induction, colour induction and visual discomfort. In Barcelona Computational, Cognitive and Systems Neuroscience.
|
|
Fahad Shahbaz Khan, Jiaolong Xu, Muhammad Anwer Rao, Joost Van de Weijer, Andrew Bagdanov, & Antonio Lopez. (2015). Recognizing Actions through Action-specific Person Detection. TIP - IEEE Transactions on Image Processing, 24(11), 4422–4432.
Abstract: Action recognition in still images is a challenging problem in computer vision. To facilitate comparative evaluation independently of person detection, the standard evaluation protocol for action recognition uses an oracle person detector to obtain perfect bounding box information at both training and test time. The assumption is that, in practice, a general person detector will provide candidate bounding boxes for action recognition. In this paper, we argue that this paradigm is suboptimal and that action class labels should already be considered during the detection stage. Motivated by the observation that body pose is strongly conditioned on action class, we show that: 1) the existing state-of-the-art generic person detectors are not adequate for proposing candidate bounding boxes for action classification; 2) due to limited training examples, the direct training of action-specific person detectors is also inadequate; and 3) using only a small number of labeled action examples, the transfer learning is able to adapt an existing detector to propose higher quality bounding boxes for subsequent action classification. To the best of our knowledge, we are the first to investigate transfer learning for the task of action-specific person detection in still images. We perform extensive experiments on two benchmark data sets: 1) Stanford-40 and 2) PASCAL VOC 2012. For the action detection task (i.e., both person localization and classification of the action performed), our approach outperforms methods based on general person detection by 5.7% mean average precision (MAP) on Stanford-40 and 2.1% MAP on PASCAL VOC 2012. Our approach also significantly outperforms the state of the art with a MAP of 45.4% on Stanford-40 and 31.4% on PASCAL VOC 2012. We also evaluate our action detection approach for the task of action classification (i.e., recognizing actions without localizing them). For this task, our approach, without using any ground-truth person localization at test tim- , outperforms on both data sets state-of-the-art methods, which do use person locations.
|
|
Adria Ruiz, Joost Van de Weijer, & Xavier Binefa. (2015). From emotions to action units with hidden and semi-hidden-task learning. In 16th IEEE International Conference on Computer Vision (pp. 3703–3711).
Abstract: Limited annotated training data is a challenging problem in Action Unit recognition. In this paper, we investigate how the use of large databases labelled according to the 6 universal facial expressions can increase the generalization ability of Action Unit classifiers. For this purpose, we propose a novel learning framework: Hidden-Task Learning. HTL aims to learn a set of Hidden-Tasks (Action Units)for which samples are not available but, in contrast, training data is easier to obtain from a set of related VisibleTasks (Facial Expressions). To that end, HTL is able to exploit prior knowledge about the relation between Hidden and Visible-Tasks. In our case, we base this prior knowledge on empirical psychological studies providing statistical correlations between Action Units and universal facial expressions. Additionally, we extend HTL to Semi-Hidden Task Learning (SHTL) assuming that Action Unit training samples are also provided. Performing exhaustive experiments over four different datasets, we show that HTL and SHTL improve the generalization ability of AU classifiers by training them with additional facial expression data. Additionally, we show that SHTL achieves competitive performance compared with state-of-the-art Transductive Learning approaches which face the problem of limited training data by using unlabelled test samples during training.
|
|
Mikhail Mozerov, & Joost Van de Weijer. (2015). Global Color Sparseness and a Local Statistics Prior for Fast Bilateral Filtering. TIP - IEEE Transactions on Image Processing, 24(12), 5842–5853.
Abstract: The property of smoothing while preserving edges makes the bilateral filter a very popular image processing tool. However, its non-linear nature results in a computationally costly operation. Various works propose fast approximations to the bilateral filter. However, the majority does not generalize to vector input as is the case with color images. We propose a fast approximation to the bilateral filter for color images. The filter is based on two ideas. First, the number of colors, which occur in a single natural image, is limited. We exploit this color sparseness to rewrite the initial non-linear bilateral filter as a number of linear filter operations. Second, we impose a statistical prior to the image values that are locally present within the filter window. We show that this statistical prior leads to a closed-form solution of the bilateral filter. Finally, we combine both ideas into a single fast and accurate bilateral filter for color images. Experimental results show that our bilateral filter based on the local prior yields an extremely fast bilateral filter approximation, but with limited accuracy, which has potential application in real-time video filtering. Our bilateral filter, which combines color sparseness and local statistics, yields a fast and accurate bilateral filter approximation and obtains the state-of-the-art results.
|
|
Marc Masana, Joost Van de Weijer, & Andrew Bagdanov. (2016). On-the-fly Network pruning for object detection. In International conference on learning representations.
Abstract: Object detection with deep neural networks is often performed by passing a few
thousand candidate bounding boxes through a deep neural network for each image.
These bounding boxes are highly correlated since they originate from the same
image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all bounding boxes. We show that removing units which have near-zero activation in the image allows us to significantly reduce the number of parameters in the network. Results on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of units in some fully-connected layers can be entirely eliminated with little change in the detection result.
|
|
Ozan Caglayan, Walid Aransa, Yaxing Wang, Marc Masana, Mercedes Garcıa-Martinez, Fethi Bougares, et al. (2016). Does Multimodality Help Human and Machine for Translation and Image Captioning? In 1st conference on machine translation.
Abstract: This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate theusefulness of multimodal data for human machine translation and image description generation. Our systems obtained the best results for both tasks according to the automatic evaluation metrics BLEU and METEOR.
|
|
Esteve Cervantes, Long Long Yu, Andrew Bagdanov, Marc Masana, & Joost Van de Weijer. (2016). Hierarchical Part Detection with Deep Neural Networks. In 23rd IEEE International Conference on Image Processing.
Abstract: Part detection is an important aspect of object recognition. Most approaches apply object proposals to generate hundreds of possible part bounding box candidates which are then evaluated by part classifiers. Recently several methods have investigated directly regressing to a limited set of bounding boxes from deep neural network representation. However, for object parts such methods may be unfeasible due to their relatively small size with respect to the image. We propose a hierarchical method for object and part detection. In a single network we first detect the object and then regress to part location proposals based only on the feature representation inside the object. Experiments show that our hierarchical approach outperforms a network which directly regresses the part locations. We also show that our approach obtains part detection accuracy comparable or better than state-of-the-art on the CUB-200 bird and Fashionista clothing item datasets with only a fraction of the number of part proposals.
Keywords: Object Recognition; Part Detection; Convolutional Neural Networks
|
|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer, & Jorma Laaksonen. (2016). Combining Holistic and Part-based Deep Representations for Computational Painting Categorization. In 6th International Conference on Multimedia Retrieval.
Abstract: Automatic analysis of visual art, such as paintings, is a challenging inter-disciplinary research problem. Conventional approaches only rely on global scene characteristics by encoding holistic information for computational painting categorization.We argue that such approaches are sub-optimal and that discriminative common visual structures provide complementary information for painting classification. We present an approach that encodes both the global scene layout and discriminative latent common structures for computational painting categorization. The region of interests are automatically extracted, without any manual part labeling, by training class-specific deformable part-based models. Both holistic and region-of-interests are then described using multi-scale dense convolutional features. These features are pooled separately using Fisher vector encoding and concatenated afterwards in a single image representation. Experiments are performed on a challenging dataset with 91 different painters and 13 diverse painting styles. Our approach outperforms the standard method, which only employs the global scene characteristics. Furthermore, our method achieves state-of-the-art results outperforming a recent multi-scale deep features based approach [11] by 6.4% and 3.8% respectively on artist and style classification.
|
|
Ozan Caglayan, Walid Aransa, Adrien Bardet, Mercedes Garcia-Martinez, Fethi Bougares, Loic Barrault, et al. (2017). LIUM-CVC Submissions for WMT17 Multimodal Translation Task. In 2nd Conference on Machine Translation.
Abstract: This paper describes the monomodal and multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT17 Shared Task on Multimodal Translation. We mainly explored two multimodal architectures where either global visual features or convolutional feature maps are integrated in order to benefit from visual context. Our final systems ranked first for both En-De and En-Fr language pairs according to the automatic evaluation metrics METEOR and BLEU.
|
|
Ivet Rafegas, Javier Vazquez, Robert Benavente, Maria Vanrell, & Susana Alvarez. (2017). Enhancing spatio-chromatic representation with more-than-three color coding for image description. JOSA A - Journal of the Optical Society of America A, 34(5), 827–837.
Abstract: Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.
|
|
Jordi Roca. (2012). Constancy and inconstancy in categorical colour perception (Maria Vanrell, & C. Alejandro Parraga, Eds.). Ph.D. thesis, , .
Abstract: To recognise objects is perhaps the most important task an autonomous system, either biological or artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the colour of surfaces despite changes in the wavelength distribution of the illumination, a property called colour constancy. Correct surface colour recognition may be adequately accomplished by colour category matching without the need to match colours precisely, therefore categorical colour constancy is likely to play an important role for object identification to be successful. The main aim of this work is to study the relationship between colour constancy and categorical colour perception. Previous studies of colour constancy have shown the influence of factors such the spatio-chromatic properties of the background, individual observer's performance, semantics, etc. However there is very little systematic study of these influences. To this end, we developed a new approach to colour constancy which includes both individual observers' categorical perception, the categorical structure of the background, and their interrelations resulting in a more comprehensive characterization of the phenomenon. In our study, we first developed a new method to analyse the categorical structure of 3D colour space, which allowed us to characterize individual categorical colour perception as well as quantify inter-individual variations in terms of shape and centroid location of 3D categorical regions. Second, we developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the precise location of nine categorically-relevant points in colour space under immersive illumination. Additionally, we derived from these measurements a new colour constancy index which takes into account the magnitude and orientation of the chromatic shift, memory effects and the interrelations among colours and a model of colour naming tuned to each observer/adaptation state. Our results lead to the following conclusions: (1) There exists large inter-individual variations in the categorical structure of colour space, and thus colour naming ability varies significantly but this is not well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) for optimal colour communication; (3) Chromatic setting improved the precision of more complex linear colour constancy models and suggested that mechanisms other than cone gain might be best suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists for categorically unbalanced backgrounds thus indicating that categorical information perceived in the initial stages of adaptation may constrain further categorical perception.
|
|
Ivet Rafegas, & Maria Vanrell. (2016). Color spaces emerging from deep convolutional networks. In 24th Color and Imaging Conference (pp. 225–230).
Abstract: Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
|
|
Ivet Rafegas, & Maria Vanrell. (2016). Colour Visual Coding in trained Deep Neural Networks. In European Conference on Visual Perception.
|
|
Yaxing Wang, L. Zhang, & Joost Van de Weijer. (2016). Ensembles of generative adversarial networks. In 30th Annual Conference on Neural Information Processing Systems Worshops.
Abstract: Ensembles are a popular way to improve results of discriminative CNNs. The
combination of several networks trained starting from different initializations
improves results significantly. In this paper we investigate the usage of ensembles of GANs. The specific nature of GANs opens up several new ways to construct ensembles. The first one is based on the fact that in the minimax game which is played to optimize the GAN objective the generator network keeps on changing even after the network can be considered optimal. As such ensembles of GANs can be constructed based on the same network initialization but just taking models which have different amount of iterations. These so-called self ensembles are much faster to train than traditional ensembles. The second method, called cascade GANs, redirects part of the training data which is badly modeled by the first GAN to another GAN. In experiments on the CIFAR10 dataset we show that ensembles of GANs obtain model probability distributions which better model the data distribution. In addition, we show that these improved results can be obtained at little additional computational cost.
|
|
Guim Perarnau, Joost Van de Weijer, Bogdan Raducanu, & Jose Manuel Alvarez. (2016). Invertible conditional gans for image editing. In 30th Annual Conference on Neural Information Processing Systems Worshops.
Abstract: Generative Adversarial Networks (GANs) have recently demonstrated to successfully approximate complex data distributions. A relevant extension of this model is conditional GANs (cGANs), where the introduction of external information allows to determine specific representations of the generated images. In this work, we evaluate encoders to inverse the mapping of a cGAN, i.e., mapping a real image into a latent space and a conditional representation. This allows, for example, to reconstruct and modify real images of faces conditioning on arbitrary attributes.
Additionally, we evaluate the design of cGANs. The combination of an encoder
with a cGAN, which we call Invertible cGAN (IcGAN), enables to re-generate real
images with deterministic complex modifications.
|
|
Mikhail Mozerov, & Joost Van de Weijer. (2017). Improved Recursive Geodesic Distance Computation for Edge Preserving Filter. TIP - IEEE Transactions on Image Processing, 26(8), 3696–3706.
Abstract: All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
Keywords: Geodesic distance filter; color image filtering; image enhancement
|
|
Aitor Alvarez-Gila, Joost Van de Weijer, & Estibaliz Garrote. (2017). Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB. In 1st International Workshop on Physics Based Vision meets Deep Learning.
Abstract: Hyperspectral signal reconstruction aims at recovering the original spectral input that produced a certain trichromatic (RGB) response from a capturing device or observer.
Given the heavily underconstrained, non-linear nature of the problem, traditional techniques leverage different statistical properties of the spectral signal in order to build informative priors from real world object reflectances for constructing such RGB to spectral signal mapping. However,
most of them treat each sample independently, and thus do not benefit from the contextual information that the spatial dimensions can provide. We pose hyperspectral natural image reconstruction as an image to image mapping learning problem, and apply a conditional generative adversarial framework to help capture spatial semantics. This is the first time Convolutional Neural Networks -and, particularly, Generative Adversarial Networks- are used to solve this task. Quantitative evaluation shows a Root Mean Squared Error (RMSE) drop of 44:7% and a Relative RMSE drop of 47:0% on the ICVL natural hyperspectral image dataset.
|
|