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ABSTRACT

Object detection with deep neural networks is often performed by passing a few
thousand candidate bounding boxes through a deep neural network for each image.
These bounding boxes are highly correlated since they originate from the same
image. In this paper we investigate how to exploit feature occurrence at the image
scale to prune the neural network which is subsequently applied to all bounding
boxes. We show that removing units which have near-zero activation in the image
allows us to significantly reduce the number of parameters inthe network. Results
on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of
units in some fully-connected layers can be entirely eliminated with little change
in the detection result.

1 INTRODUCTION

Deep neural networks are often trained for recognition problems over very many labels. This is
partially to ensure wide applicability of the network and partially because networks are known to
benefit from multi-label data (additional training examples from one class can increase performance
of another class because they share features among several layers). At testing time, however, one
might want to apply the neural network to a collection of examples which are highly correlated.
They only contain a limited subset of the original labels andconsequently will result in sparse node
activations in the network. In these cases, application of the full neural network to the whole col-
lection results in a considerable amount of wasted computation. In this paper we describe a method
for pruning of neural networks based on analysis of internalunit activations with the objective of
constructing more efficient networks.

In computer vision many problems have the structure described above. We briefly mention two
here. Imagine you want to classify the semantic content in each frame (an example) of a video
(the collection). A fast assessment of the video might reveal that it is an indoor birthday party.
This knowledge might exclude many of the nodes in the neural network – those which correspond to
’snow’, ’leopards’, and ’rivers’, for example, will be unlikely to be needed in any of the thousands of
frames in this video. Another example is object detection, where we extract thousands of bounding
boxes (examples) from a single image (the collection) with the aim of locating all semantic objects
in the image. Given an assessment of the image, we have knowledge of the node activations for the
entire collection, and based on this we can propose a smallernetwork which is subsequently applied
to the thousands of bounding boxes. We will here only consider the latter example in more detail.

Reducing the size and complexity of neural networks (or network compression) enjoys a long his-
tory in the learning community. The authors of Bucila et al. (2006) train a simpler neural network
to mimic the output of a complex one, and in Ba & Caruana (2014)the authors compress deep and
wide (i.e. with many feature maps) networks to shallow but wider ones. The technique of Knowl-
edge Distillation was introduced in Hinton et al. (2015) as amodel compression framework. The
framework compresses an ensemble of deep networks (teacher) into a student network of similar
depth. More recently, the FitNets approach leverages the Knowledge Distillation framework to ex-
ploit depth and train student networks that arethin but remaindeep( Romero et al. (2014)). Another
network compression strategy was proposed in Girshick (2015); Xue et al. (2013) that uses singu-
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lar value decomposition to reduce the rank of weight matrices in fully connected layers in order to
improve efficiency.

In this paper we are not interested in mimicking the operation of a deep neural network over all
examples and all classes (as in the student-teacher compression paradigm common in the literature).
Rather, our approach is to make a quick assessment of image content and then, based on analysis of
unit activation on entire image, to modify the network to useonly those units likely to contribute to
correct classification of labels of interest when applied toeach candidate bounding box.

2 FORWARD AND BACKWARD UNIT PRUNING FOR OBJECT DETECTION

Figure 1: Example of backward and forward unit
pruning. We use‖.‖ to indicate therelu (.) activa-
tion function. Based on knowledge that some unit
activationshk (x) are zero (indicated in green),
we can reduce the parameters ofW

k, Wk+1 and
b
k (indicated in red).

Consider the original neural networkf (x; θ),
whereθ are the network parameters. We wish
to compute a network defined by parametersθ∗

for which:

f (x; θ∗) ≈ f (x; θ)∀x ∈ C (1)

where|θ∗| < |θ| (i.e. the number of parameters
in θ∗ is considerably lower than in the original
network). In the case of object detection we
will use the unit activations of the entire image
to prune the network which will be applied to
all the bounding box proposals. This is based
on the observation that for some layers, nodes
with zero activations on the whole image can-
not have nonzero activation on any bounding
box in the image.

The hidden layer activation of a fully connected
layerk can be written as:

h
k (x) = relu(bk +W

k
h
k−1 (x)) (2)

wherebk andW are the biases and weights of
thek-th layer, andrelu(·) indicates the rectified
linear activation function. We first consider how knowledgeof the absence of node activations in the
image can be translated into a network with fewer parameters. We consider two cases: backward
and forward unit pruning, as illustrated in Fig. 1.

Backward unit pruning: Without loss of generality, we order the activations in layer hk so that
theq non-active, zero nodes are at the end of vectorhk. Then we can write:

[

h
k (x)1:(n−q) ;0q,1

]

= relu
([

W
k
1:(n−q),1:m;0q,m

]

h
k−1 (x) +

[

b
k

1:(n−q)
;0q,1

])

(3)

where we use0m,n to indicate the zero-matrix of dimensionm by n, and subscripts are used to
indicate a selection of indices from the original vector or matrix. We use[., .] for horizontal and[.; .]
for vertical concatenation (following Matlab convention). Eq. 3 shows that backward unit pruning
allows us to remove fromWk andbk an equal amount of rows as there are zeros inh

k – without
changing the output of the network.

Forward unit pruning: Here we look how the zeros in the activationhk can be exploited to
remove parameters from the following layer. The activationin layerk + 1 can be written:

h
k+1 (x) = relu

([

W
k+1
1:p,1:(n−q),0p,q

] [

h
k (x)1:(p−q) ;0q,1

]

+ b
k+1

)

(4)

In this case, the zeros inhk result in the removal of columns fromWk+1. These can be removed
without changing the output of the network.

In practice there might only be a few zero activation in the image and therefore we consider all node
activations which are below a certain threshold to be zero1. This allows us to further increase the

1In case the activation function is not the ReLU one should consider the absolute value of the activation
function to be smaller than a threshold.
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parameter reduction of the networkf (x; θ∗) but at the cost of slight deviations from the original net-
work f (x; θ). We also note that although notations are about fully-connected layers for simplicity,
our proposal would also be applicable to convolutional layers too.

3 RESULTS AND CONCLUSIONS

We evaluate our proposed methods on the VOC PASCAL 2007 dataset (Everingham et al. (2010))
with the fast R-CNN framework by Girshick (2015). The VOC 2007 has a total of 24,640 annotated
objects for training, with an average of 2.5 objects per image, and in the test set an average of 2.4
objects per image. The Fast R-CNN framework is fit for our purposes since it first passes the image
through all the convolutional layers to later use the extracted feature maps with the corresponding
bounding boxes which we want to evaluate (usually 1,000+ boxes). The network used a modification
of the VGG16 network (Simonyan & Zisserman (2014)).

Forward pruning. Our first experiment uses forward unit pruning on thepool5 layer of the
VGG16 network to reduce the number of parameters of thefc6 layer. This is the layer with highest
percentage of parameters (38.7% parameters in the network). The pool5 layer has512 × 7 × 7
outputs, where the first dimension represents the feature maps, and the second and third dimensions
are spatial dimensions (smaller than the original image size because of the resizing at each pooling
layer). In order to decide which activations to prune, we first pass the whole image through the
network and observe the activations at each unit inpool5. We sum over the spatial dimensions and
apply a threshold to select units to prune from the network before applying it to all bounding boxes.
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Figure 2: Performance loss as a function of pa-
rameter reduction.

Results show an initial minor improvement in the
performance of the framework when removing
parameters (see Fig. 2). The lack of propagation
through the network of very low value activations
could be the cause of the small difference in per-
formance. Then, for reductions of 25-40% of the
parameters on layerfc6, we obtain a mAP loss of
less than 1. From that point on, further removal of
parameters leads to higher loss. This happens be-
cause the activations removed start to be too rele-
vant for the network’s discriminative power.

Backward pruning. The second experiment ap-
plies backward unit pruning to thefc8 layer to re-
duce the number of parameters from the weight
and bias matrices used to compute the network
outputs. In this case, we use an image classi-
fier (VGG16 deep features based) to decide which
classes (activations) would be more likely to ap-
pear in the original image. Based on that classifi-
cation, we adopt a top-N strategy where we keep

theN classes with higher probability from the image classifier and remove the rest. This reduction
affects the weight and bias matrices of thefc8, which would no longer propagate into the follow-
ing layers (the softmax in this case). In this case, results keeping 6 or more classes (reductions of
0-70%) show a mAP loss of less than 1. However, performance starts dropping after because of im-
ages having more classes present than classes kept. It should be noted that only a small percentage
of the total parameters of the network are infc8. However, when considering object detection with
thousands of classes, the relevance of this layer is comparable to fc6.

Conclusions. We have presented a method to prune units in neural networks for object detection
through analysis of unit activation on the entire image. We show that for some layers up to 40% of the
parameters can be removed with minimal impact on performance. We are interested in combining
our method with other parameter reduction methods such as Xue et al. (2013). Also applying our
method to other types of layers (e.g. convolutional) and evaluating on datasets with very many labels
are promising research directions. In addition, we are interested in applying our method to semantic
segmentation where, similarly as in our problem, a redundant network is applied to every pixel.
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