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Abstract

Defining color spaces that provide a good encoding of
spatio-chromatic properties of color surfaces is an open
problem in color science [8, 22]. Related to this, in com-
puter vision the fusion of color with local image features has
been studied and evaluated [16]. In human vision research,
the cells which are selective to specific color hues along
the visual pathway are also a focus of attention [7, 14]. In
line with these research aims in this paper we study how
color is encoded in a deep Convolutional Neural Network
(CNN) that has been trained on more than one million natu-
ral images for object recognition. These convolutional nets
achieve impressive performance in computer vision, and ri-
val the representations in human brain. In this paper we
explore how color is represented in a CNN architecture that
can give some intuition about efficient spatio-chromatic rep-
resentations. In convolutional layers the activation of a
neuron is related to a spatial filter, that combines spatio-
chromatic representations. We use an inverted version of it
to explore the properties. Using a series of unsupervised
methods we classify different type of neurons depending on
the color axes they define and we propose an index of color-
selectivity of a neuron. We estimate the main color axes
that emerge from this trained net and we prove that color-
selectivity of neurons decreases from early to deeper layers.

1. Introduction
Although color is by definition a property of a point of

a surface, in most visual tasks it requires to be described
as a non-isolated point. It usually appears influenced by
the shape and types of materials of the surface, the light-
ing effects of the surround and the observer conditions. All
of these, obligates to describe the spatio-chromatic proper-
ties of a surface as a whole. The representation of spatio-
chromatic properties can be studied from different points of
view.

In color science, color appearance models [8] have de-
fined spaces and methods to describe spatial effects in color

perception. In human vision, one focus of attention to study
the spatio-chromatic representations in the visual pathway
has been measuring color selectivity of specific cells, con-
cluding with the importance of single and double-opponent
cells [14, 7]. In computer vision, where the goal is to build
good computational models to perform visual tasks, such
as object recognition, the evaluation of different methods to
fuse color and local image features has attracted most of the
interest [16].

Currently, in computer vision image feature selection
and classification is mainly driven by the impressive re-
sults provided by deep convolutional networks. These net-
works are built with different architectures and are trained
to perform different visual tasks. In general, they are based
on hierarchical feedforward architectures combining differ-
ent levels of convolutional and pooling layers. After be-
ing trained with large image datasets they provide excellent
local color-feature selectors to encode invariant representa-
tions of complex objects at the top of the net.

Although these successful architectures are designed to
solve engineering problems, they show some biological in-
spiration which can be proved in different aspects of these
architectures: (a) a deep hierarchy similar to the different
stages of the ventral stream of the human visual system, (b)
layers based on a bank of convolution operations encoding
the translation-invariant spatial properties of specific fea-
tures across the visual field, and (c) the max pooling and
subsampling steps that insert some local tolerance and in-
troduce scale invariance along the hierarchy. These prop-
erties already appeared in previous bio-inspired models like
HMAX [13]. Based on these ideas, Kriegeskorte in [10] has
recently proposed deep neural networks as a framework to
model biological vision an brain information processing.

Considering the amazing performance of human brain in
object recognition, that is achieved with invariance to light-
ing, specularities or any surrounding influence that varies
the color, in this paper we use a trained CNN to understand
how color is represented in this architecture. Exploring the
properties of how color is encoded in a CNN can allow a
double outcome, on one side to get new inspiration about
how spatio-chromatic representations can be improved and
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on the other side a better understanding on how CNN is en-
coding visual information, that is a central topic in computer
vision.

We perform two main analysis in the paper: (1) we build
a decoded version of the spatial filter associated to a neu-
ron, and we use it to classify the neurons in terms of their
color representation, (2) we analyze the images which pro-
voke maximum activations of a given neuron and we pro-
pose an index to evaluate their color selectivity property.
This work is a first approach towards the understanding of
color in CNN, and multiple research lines are opened from
the conclusions we present after the analysis.

The paper is organized as follows, in the next section
we define a CNN and afterwards we explain how we per-
form the filter projection, this is a generic estimation of the
properties of the filter in the image space. Subsequently, we
use a series of unsupervised methods to classify different
type of neurons depending on the color axes they define. In
the discussion section we estimate the main color axes that
emerge from this trained net and we propose an index for
color-selectivity of a neuron.

2. Inversion of the neuron activation
A Convolutional Neural Network is defined as several

stacked layers operating on their inputs to produce a rep-
resentation change, thus each layer yields a new level in
the encoding process. Layers parameters are learned using
the backpropagation algorithm, that search for a solution
that minimizes a loss function that depends on the visual
task the network is trained for. Mainly, two types of layers
are used: convolutional and pooling. The main responsible
layers on the encoding process are the convolutional ones,
which apply a convolution operator between the input im-
age representation and the set of filters of the layer trying to
extract specific information from images. More explicitly,
with this operation the image locations where the filter tem-
plate best matches are highly activated. A CNN learns to
match filter shapes with image structures which are impor-
tant for the goal task. As layers are stacked, each filter shape
is expressed in terms of the previous layer: each neuron is
specialized through connections with other cells of the pre-
vious layer. This interpretation of the process also support
with the fact that the filter bank of the first convolutional
layer is easily understood compared to the rest. The pool-
ing layers are devoted to reduce the image size to introduce
some tolerance to spatial shifts and increasing the number
of a spatial features at different scales. To sum up, each
neuron at every layer is specialized in encoding specific im-
age parts depending on the previous layers. Understanding
how a CNN encodes image information to achieve such re-
markable results is a focus of attention in computer vision
[1, 2, 6, 18, 15, 17] that is not solved yet.

In this work, to explore the activation of a neuron to a

given input pattern we will work on a decoded version of the
neuron filter. A decoded filter should be a projection of the
neuron activity towards the image space. The convolution
of an input image with a decoded filter should give an acti-
vation similar to the net activation. It should be computed
by the network inversion. However, polling is not invertible,
and convolution with a kernel is linear but not all kernels
can be inverted. Therefore, both operations do not allow
to compute the perfect inverse network. Consequently, we
build an estimation of this decoded filter by making some
specific assumptions on the lost information. We will de-
note the ith neuron of a specific layer L, as nL,i, which is
initialized with its corresponding filter, FL,i at level L. In
what follows we explain the decoding process in two sepa-
rate parts: convolution and pooling. The estimation of the
neuron inversion will be iteratively computed from layer L
through all intermediate layers l, this is denoted as n̂L,l,i,
ending at layer 1, which represents the image space.

Inversion of Convolutional Layers: Inverting the en-
coding of a convolutional layer was firstly approached by
Kavukcuoglu et al. [9] and afterwards, the stacking of sev-
eral layers was performed in [19]. In both works, this inver-
sion is approximated by the convolution with the transposed
filter, which is called deconvolution. We project a neuron
onto an inferior layer by deconvolving it with the set of fil-
ters of the neurons it is connected to. This step is different
from what is done in [18], where the authors back the fea-
ture activities in intermediate levels to the input pixel space
through the deconvolution. We map the filter pattern to the
input pixel space. By doing this, instead of analyzing the
image appearance that highly activate the neuron at a cer-
tain layer, we will focus on the properties of the built filter
that can help in understanding the intrinsic neuron activa-
tion. The inversion of the convolutional layer is computed
as:

{n̂L,l,i)
j }j=1..cl = {

sl∑
k=1

n̂L,l+1,i
k ∗ f l,k

j }j=1..cl (1)

where sl denotes the number of filters of the layer l, cl
the number of channels of these filters, n̂L,l+1,i

k is the kth
channel of the estimated mapping of the neuron we are ex-
ploring, nL,i, at layer l + 1, and f l,k

j is de jth transposed
channel of the kth filter FL,k. The symbol ∗ denotes the
convolution operation.

Inversion of Pooling layers: Inverting pooling layers is
not possible, they reduce the image size usually with a max
pooling operation performed on a neighborhood region to
keep the strongest activations in this zone. These layers
simplify the information by capturing what is most relevant



in the area tolerating small spatial shifts. One way to ap-
proximate the inversion is to preserve the specific location
where the maximum values of the activations came from
[20], this is useful to recover the intermediate feature activ-
ities which are dependent of the image. Since we are re-
covering the filter itself without consider the activations of
the images, this inversion can be approximate by a simple
upsampling of the representation, then we define the un-
pooling operation as:

Φ(n̂L,l+1,i
k ) (2)

where Φ denotes the image upsampling function that re-
covers the previous size of the representation considering
the layer parameters. The loss of information is recovered
by an interpolation method.

Other types of layers such as the Rectified-Linear Units
(ReLU) layers are not considered in the inversion process of
filters. These layers are usually devoted to inhibit negative
responses of image activations. Taking into account that
filters have been learned without these negative responses,
inverting them would imply to insert information that did
not participate in the training process.

Finally, we want to point out about the stride parameter.
It has an important effect on the inverted shapes, since it is
related to the spatial relationship between pixels. It intro-
duces more errors in the inversion process of both, convo-
lution and pooling. To deal with it we estimate its effect
by a direct upsampling of the representation previous to any
inversion process.

The results of applying the method explained in this sec-
tion can be seen in figure 1. We can observe the decoded
estimation of the neurons at different 5 convolutional layers
of the CNN we study in this work. Its architecture is given
in table 1 and it is explained with more details in section 5.

3. Extracting layer color axes
In this section we explore the decoded filters we have

obtained above. As we can observe in figure 1, the appear-
ance of the filters presents a huge variety both in shape and
color. In this work we try to approach the understanding of
color representation in CNNs through the analysis of these
decoded filters. This exploration is a hard task, considering
the amount of filters and their variety. We have observed an
important correlation between the color of these filters and
the color of their maximum activation images. This correla-
tion is specially important in the first layers of the network.
Following this idea, we explore the color axis represented
by each filter and based on these axes, we will estimate the
main color axis of each layer.

To this end, we perform a classification according to their
color properties, which we use to get subsets of different de-
coded filters sharing some properties and be able to search

for those filters that define the color space for each layer.
The analysis is done on the following opponent-color space,
based on [11] but with all axis ranges compressed between
-1 and 1 values:

O1 = (R + G + B − 1.5)/1.5,
O2 = (R−G),
O3 = (R + G− 2×B)/2

(3)

First, we classify the neurons considering their color cor-
relation with a linear axis. We use the Principal Compo-
nent Analysis method (PCA) to obtain the main axis that
fits the color distribution. The line of the axis is given by
the eigenvector direction with highest eigenvalue and the
point given by the color mean. Depending on the disper-
sion of these color pixels in the space, we separate between
linearly correlated filters (called aligned) against dispersed
filters. In fact, color pixels of linearly correlated neurons
can be expressed by the colored-axis obtained by this re-
gression. This classification arises from the observation that
aligned filters present an strong spatial correlation between
channels, and consequently simpler spatial shapes. While
non-aligned filters present complex shapes which are diffi-
cult to understand from the decoded filter.

Second, once aligned filters are found, we analyze the
color variability of these aligned decoded filters in terms
of the amount of color names labels that can be assigned.
To this end we have applied the parametric model for the
universal terms developed by Benavente et al in [3]. It cat-
egorizes each color pixel in one of the 11 basic colors de-
fined by Berlin and Kay [4]: red, orange, brown, yellow,
green, blue, purple, pink, black, gray and white. In this way,
neurons can be classified as single-color neurons the ones
which are categorized with one color, double-color neurons
having two colors and we also consider multiple-color neu-
rons when they presents a higher number of colors. In other
hand, aligned neurons are also classified according to their
color axis position in the opponent color space. Centered
neurons are those whose axes cross the origin of the color
space, and shifted neurons, those whose axes are away from
the origin.

Given the previous classification, we finally focus on
one of the classes, which is the one of double-color neu-
rons, having a centered aligned axis. This specific subset
is, somehow, defining the color space at the correspond-
ing layer. Two main categorization can be done observing
the amount of variance on the intensity channel: high vari-
ance corresponds to black and white selectivity, while low
variance to double-color selectivity. From that point, we
are able to select the main color axis for each layer: we
project each color axis to the chromaticity plane RG-BY by
subtracting intensity information of the double-color pro-
jected neuron axis and we analyze their distribution along
this plane. Specifically, we consider the angle between their
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Figure 1: Neuron projection to image space. Decoded filters (DF) approximated for five convolutional layers of CNN-M net.

axes and the RG axis of the color space. This distribution
is modeled through an expectation-maximization algorithm
(EM) to find the mixture of gaussians that fits them. With
this procedure, we obtain the color axis of each layer as the
ones defined by the mean of each component distribution.

To sum up, we propose a neuron categorization process
in order to get a subset of decoded filters that allow to ex-
plore relevant color directions of the layer. With the EM
model we are able to extract the axes of the color space that
emerge from these neurons.

4. Analyzing CNN color selectivity

Once we have extracted relevant axes of net layers,
which were derived from decoded filters, another interest-
ing point is the study individual neuron selectivity to a par-
ticular property. Several research studies on Convolutional
Neural Networks have demonstrated that internal neurons
are selective to a particular appearance of the object, or ob-
ject style, viewpoint, etc. [15, 23, 18, 17, 1, 2]. In this
section, we focus on the study of color selectivity of the
neurons, trying to answer the question about how important
is color selectivity in these architectures.

In order to do this, we apply an unsupervised classifica-
tion method to analyze the color selectivity of a neuron from
the study of the image parts having maximum activations.
This process should give us the number of different colors
appeared in these top images. We consider that a neuron
is color selective if it is activated by images presenting a
subset of specific predominant colors. Heretofore, we ana-
lyze the colors of the t top activations for each neuron in a
random subset of the dataset.

Following this idea, we need to characterize the color of
the image patches corresponding to a high activation of a
certain neuron. Since we need a global color description,
we will use the labels of a color naming approach [3]. Each
pixel is transformed into a 11-dimensional space from its
color probabilities to belong to a certain basic color. We
build our wide-range description of this cropped image by
clustering the set of pixels in k categories using the k-means

method onto the 11D space. The obtained centroids will al-
low to obtain compound color categories that capture more
than eleven labels but preserving a global description of the
image colors. In this way, each cropped image can be de-
scribed by the histogram of the labels defining its predomi-
nant colors, this is the probability of finding a pixel with an
specific label in the image.

To quantify the color selectivity of a neuron we will use
the descriptors computed on the t top activation images. We
will combine the histograms of labels of the t images, that is
denoted as h. It is representing the probability to find a pixel
with a specific label in the t images. A neuron with high
index of color selectivity will concentrate most of the pixels
on a small subset of labels, on the contrary, a neuron with
low index of color selectivity will present a flat histogram
with pixels in all the bins or labels.

We define the index of color selectivity index of a neu-
ron, Sp, as the ratio of pixels contained by the p bins with
highest probabilities, given by

Sp(nL,i) =

∑p
m=1 hm(nL,i)

p
(4)

where hm is the mth maximum of the histogram de-
scriptor h.

5. Results and discussion
In this paper we analyze the neurons of a CNN architec-

ture trained on ImageNet ILSVRC dataset [12] for a generic
visual task of object recognition, which contains around
1.2M of images classified in 1.000 categories. We use the
CNN trained by Chatfield et al. in [6], where was referred
as a medium net (CNN-M). Its architecture is summarized
in table 1. This network is of note due to similar net shows
a good representational performance when is compared to
human one [5].

In this section we perform two experiments on CNN-M
network, but we only focus on its convolutional layers with-
out considering the last fully connected layers. First, we
study the color axes in each convolutional layer using the
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Figure 2: Color axes emerging from the convolutional layers of the explored CNN. (a) 3 color axes in conv1. (b) anc (c) 4
color axes in conv2 and conv3, respectively. (d) and (e) 5 color axes in conv4 and conv5, respectively. For each convolutional
layer, the first raw is the distribution of double-color neurons for each chromaticity angle on an opponent space (RG-BY),
gray bars correspond to the number of neurons, in red the estimated Gaussian mixtures modeling the emerging color axes.
Second row, are the chromaticity axes corresponding to the estimated means of the mixture model provided given by the EM
algorithm.

process explained in section 3 and second, we compute the
index of color selectivity for all the neurons in convolutional
layers following the method shown in section 4.

Figure 1 shows the set of neuron projections obtained as
explained in section 2 in the different convolutional layers.
From these projections, we can observe that decoded fil-
ters present simpler shapes in first layers, so complexity of
shapes is increasing through layers and is more difficult to
interpret these shapes in last layers. Moreover, lower lay-
ers present more separation between colors and black-white
neurons. Nevertheless, we have to consider that the pro-
cess of projecting each neuron accumulates errors through
layers.

The aim of the first experiment is to analyze the color
spaces emerged from this deep convolutional network. This
color spaces are defined by the set of axes of the aligned,
centered and double-color neurons. Table 2 illustrates the
results of our classification for conv5. Aligned filters show
simpler spatial shapes compared with the dispersed ones.
As we explained in section 3 we use the EM Gaussian mix-
ture model to get the principal color axis that this specific
subset of neurons are defining. Note that this clustering al-
gorithm is done from the chromaticity angle on the oppo-
nent space (RG-BY), and there are only considered angles
between 0 and 180 degrees. This fact implies to fit our data
in a kind of circular space. For this reason, we successively
shift the last bin into the first position of the histogram and
evaluate the EM algorithm by the AIC measure to choose
the best one. We also consider different possible number
of classes (from 3 to 10) and again AIC is used to get the
final fitting. Figure 2 shows the probability of double-color
neurons along the RG axes in all of the convolutional layers

studied in this paper. Surprisingly, in the first layer emerges
a color space with 3 color axes. It is important to clarify
that black and white axis is not considered in this study,
so that first convolutional layer is somehow defining a 4-
D color space: black-white, red-cyan, magenta-green and
blue-yellow. This result can be related with the contro-
versial debate of the existence of this third color channel
also exposed in [21]. From second convolutional layer a 5D
color space is emerged, adding a red-green layer compared
to the color space emerged in conv1. In the same figure, we
can observe that as we go deeper in the layers, the neuron
color axes are covering a major range of hues. Neverthe-
less, we have to specify that white and black axes disappear
from conv3. Moreover, from this results we can observe
that most neurons tend to be expressed in reddish-greenish
terms.

Finally, our second experiment determines the index of
color selectivity through the different convolutional layers.
Each neuron is studied from the 9th parts of images which
provoke a high activation of that neuron (t = 9). We ap-
ply the methodology explained in section 4 to analyze the
degree of selectivity of each layer. In figure 3 we plot
the percentage of neurons for each convolutional layer that
has a greater index of color selectivity value than a thresh-
old (th = 0.30, 0.40, 0.50, 0.60, 0.70) fixing p = 3. This
graphic shows that color selectivity clearly decreases as
layer is deeper in the architecture. This fact implies that
CNN is more color invariance as we go up in the net, as
expected. Another interesting observation on these results,
is that the highest decrement of selectivity neurons is done
between conv2 and conv3, where there are no more black-
white neurons.



conv1 conv2 conv3 conv4 conv5 full6 full7 full8
96x7x7 256x5x5 512x3x3 512x3x3 512x3x3 4096 4096 1000

st. 2, pad. 0 st. 2, pad. 1 st. 1, pad. 1 st. 1, pad. 1 st. 1, pad. 1 dropout dropout softmax
LRN, x2 pool LRN, x2 pool x2 pool

Table 1: CNN-M architecture designed by Chatfield et al. in [6]. We use their notation, where M ×N × P corresponds to
number of filters, number of rows and number of columns of the filters respectively. St. and pad. refers to stride and padding
respectively; LRN is a Relu and the corresponding pooling (pool) if applied.

Aligned Dispersed
Centered Axes Shifted Axes

Single-color

Double-color

Table 2: Classification of neurons in conv5 layer of the CNN-M. Neurons are classified in 4 different classes, depending on
their linear correlation and their number of appearing colors.

Figure 3: Color selectivity behavior through the different
convolutional layers of the analyzed CNN. This plot com-
pares the percentage of neurons per layer that has a index
selectivity greater than a fixed threshold.

6. Conclusion

In this paper we have explored how color is represented
in a Convolutional Neural Network from a projected version
of each neuron. As a result we conclude that 3 chromaticity
axes emerge in the first layer, instead of the classical Red-

Green and Blue-Yellow. We also can state that as we go up
in the hierarchy, the estimated axes in the first two layers
try to equally cover the full hue space, with the 3rd layer a
major concentration on one specific axes is emerging, which
in decoded filters is more aligned with a Red-Green axis.
Black and White color axes is defined in first two layers, and
a bit in the 3rd; but deeper layers have no specific black and
white neuron. Finally, we also observe that color selectivity
is an important feature in the first convolutional layers but it
is decreasing through layers, this is an obvious conclusion
since the decrease in selectivity must be accompanied by an
increase in invariance that is a must for a good behavior of
the net.
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